Caricamento in corso...
rMIX: Il Portale del Riciclo nell'Economia Circolare - Italiano rMIX: Il Portale del Riciclo nell'Economia Circolare - Inglese rMIX: Il Portale del Riciclo nell'Economia Circolare - Francese rMIX: Il Portale del Riciclo nell'Economia Circolare - Spagnolo
179 risultati
https://www.rmix.it/ - Le Cause della Riduzione Qualitativa del Polipropilene Durante il Riciclo Meccanico
rMIX: Il Portale del Riciclo nell'Economia Circolare Le Cause della Riduzione Qualitativa del Polipropilene Durante il Riciclo Meccanico
Informazioni Tecniche

L’analisi dei flussi dei rifiuti in ingresso, la selezione, le miscele e l’impatto termico sulle prestazioni finalidi Marco ArezioIl polipropilene è una famiglia di polimeri molto utilizzata per la produzione di articoli nelle più svariate applicazioni, in quanto associa resistenza, facilità di colorazione e semplicità di impiego attraverso processi termici differenti come l’iniezione, il soffiaggio, l’estrusione e la termoformatura. È anche un polimero che si presta facilmente alle operazioni di compound, attraverso le quali si possono miscelare additivi che inducono modifiche alla struttura, incrementando così le prestazioni finali del prodotto, rendendolo più rigido o più flessibile o più performante agli sforzi di compressione, trazione o di taglio. In virtù della sua duttilità e della facilità di produzione, lo scarto che viene raccolto, per essere poi riciclato meccanicamente, presenta un’eterogeneità di composti che è importante conoscere, per poter prevenire eventuali errori qualitativi sulla materia prima seconda che si andrà a produrre. Innanzitutto vediamo come si svolge un normale processo di riciclo meccanico di un rifiuto in polipropilene.Lo scaro del polipropilene che viene avviato al riciclo si può presentare sotto forma di rifiuto rigido, per esempio le cassette dell’ortofrutta, i bancali, i paraurti, i flaconi, oppure sotto forma di rifiuto flessibile, come i sacchetti, i Big Bags, i teli e i film del settore del packaging. L’insieme di questi rifiuti dovranno preventivamente essere separati meccanicamente, in modo da creare un input di scarti dalla consistenza rigida e uno dalla consistenza flessibile, così da avviarli a processi di lavorazione differenti. Dopo avere fatto una prima sommaria cernita per macrocategorie, si cerca di separare i rifiuti in base alla tipologia di prodotto iniziale, per esempio i flaconi si separeranno dai secchi, i bancali dai prodotti farmaceutici, le cassette dell’ortofrutta dai tubi e così via. Anche per quanto riguarda i rifiuti flessibili si cercherà di separare le diverse tipologie di teli, in base alla tipologia di imballo per cui erano destinate, alle lavorazioni a cui sono state sottoposte e ai prodotti con cui sono stati in contatto. Questa seconda selezione è volta a creare una possibile omogeneità tra le famiglie di rifiuti selezionati, in modo da rendere il loro riciclo il più semplice e qualitativo possibile. Lo scarto ulteriormente selezionato verrà poi lavato, con processi a decantazione e meccanici, in modo da ridurre al minimo le contaminazioni presenti sulla scaglia, che potrebbero pregiudicarne le qualità meccaniche e l’aspetto estetico. Terminato il processo di lavaggio lo scarto rigido verrà asciugato, mentre quello flessibile passerà nel densificatore per agglomerare le parti leggere, in modo che sia maggiormente lavorabile nell’estrusione. Successivamente si utilizzerà questo semilavorato come alimentazione per gli estrusori nella preparazione delle ricette di nuovi granuli riciclati, ricreando il circolo virtuoso dell’economia circolare. Descritto brevemente il processo di riciclo meccanico del polipropilene vediamo quali possono essere i problemi più comuni da affrontare e come poterli risolvere. La prima cosa da verificare, nell’attività di riciclo meccanico del polipropilene, è la conoscenza tecnica delle differenze, nei flussi dei rifiuti in ingresso, sulle varie strutture molecolari del polimero. Infatti il peso molecolare, la sua cristallinità e la sua origine, tra omopimero e copolimero, possono influenzare le qualità fisico-meccaniche del prodotto finale. Ad esempio, i contenitori o i secchi per conservare lubrificanti o vernici sono comunemente realizzati in copolimero a blocchi, che ha un buon equilibrio tra proprietà di impatto e rigidità. Altri contenitori in polipropilene, come i flaconi per prodotti per l'igiene e la pulizia o i contenitori per latticini, possono anche essere realizzati in copolimero random o omopolimero, quindi, la differenza di temperatura di fusione varia tra omopolimeri (160-165 °C) e polipropilene copolimero (135-159 °C). Se queste differenti origini e caratteristiche del materiale venissero combinate fra loro durante il riciclo meccanico, ne scaturirebbe un granulo riciclato di qualità inferiore rispetto allo stesso prodotto attraverso una selezione del rifiuto più attenta. La seconda cosa da tenere presente è la possibile contaminazione del polipropilene con altre plastiche comuni come il PE. Tra i tanti polimeri, l’HDPE, è quello che crea più spesso una possibile contaminazione, se non separato precedentemente nel flusso di scarti in ingresso, infatti il PP e l’HDPE, entrambi della famiglia delle poliolefine, hanno una grande somiglianza nella loro struttura e hanno una densità inferiore a 1, galleggiano quindi nell’ acqua di lavaggio. Inoltre, durante le fasi di estrusione, il PP e l’HDPE hanno temperature di fusioni differenti, compresa tra 160 e 170 °C per il polipropilene e 130 °C per l’HDPE, portando quest’ultimo alla possibile degradazione termica, che si manifesta nella formazione di particelle nere che possono essere impresse sui prodotti finali, con carenze dal punto di vista estetiche. E’ quindi consigliabile limitare la presenza di HDPE sotto la soglia del 5%, per ridurre l’impatto negativo sui prodotti realizzati con la materia prima riciclata. La terza cosa da considerare, come abbiamo accennato prima, è il fatto che il PP si presta facilmente alle operazioni di compound, quindi lo scarto potrebbe contenere, cariche come il talco, il carbonato di calcio, la fibra di vetro, i metalli o colori particolarmente aggressivi. Sapendo che i vari additivi da compound hanno comportamenti fisici e meccanici diversi, sia in fase di trasformazione della materia prima che dal punto di vista estetico che prestazionale sul prodotto finito, è importante procedere all’analisi dei contenuti, con prove di laboratorio, per capire come utilizzare, durante le fasi di riciclo, lo scarto additivato. La quarta cosa che si deve tenere presente è il degrado del polimero, non solo quello di cui abbiamo accennato riguardante la fase termico-estrusiva per produrre il granulo, ma anche quella che possiamo definire foto-ossidativa, per cui un prodotto plastico esposto alla luce e al calore, genera un decadimento delle proprie prestazioni a causa dell’indebolimento e della modifica delle sue catene. Infatti, la degradazione ossidativa può essere generata non solo dalla degradazione termica, indotta dalla radiazione solare, ma anche da elevate sollecitazioni meccaniche. Quando il polimero si degrada, l'ossigeno presente nel materiale plastico disintegra le molecole e crea radicali liberi, che reagiscono rapidamente a catena con l'ossigeno. Si può quindi ricordare che il polipropilene, nell’ambito del riciclo meccanico, è un polimero con una spiccata proprietà di degradazione termica rispetto ad altre tipologie di plastica, sia durante il suo ciclo di vita (principalmente per foto-ossidazione), sia durante le fasi di lavorazione e riciclo. Il calore, le sollecitazioni meccaniche e le radiazioni ultraviolette modificano fortemente la struttura e la morfologia e, di conseguenza, le caratteristiche e le proprietà del polipropilene riciclato. Sia l'allungamento che la resistenza all'urto sono le proprietà maggiormente influenzate dal fenomeno del degrado, oltre a cedimenti di scolorimento e altri danni estetici che devono essere presi in considerazione. Come ultimo aspetto, tra molti altri che si possono illustrare, citerei la problematica dell’odore che può accompagnare i rifiuti in polipropilene da post consumo. L’odore nell’input del rifiuto può formarsi a causa della commistione tra plastiche che hanno contenuto liquidi o solidi aggressivi, o causati dalla fermentazione biologica degli scarti alimentari o dalla presenza di composti chimici, come i tensioattivi, che possono impregnare il polipropilene. Le fasi di lavaggio, anche molto accurate, generalmente possono ridurre l’impatto odorifero ma difficilmente sono risolutive del problema. Essendo la presenza dell’odore nelle plastiche riciclate da post consumo sgradevole per i prodotti finali, e non essendoci, ad oggi, un sistema di asportazione definitiva, si rende necessario dover separare i flussi di rifiuto in entrata, attraverso una verifica analitica, tra quelli che risultano contaminati da composti chimici sgradevoli. Questa operazione viene svolta velocemente, in modo preciso ed analitico, con un test sul campione di rifiuto in ingresso, impiegando la gascromatografia a mobilità ionica, che consiste nell’inserimento all’interno di una provetta di un piccolo frammento di rifiuto plastico, caricandolo poi nella macchina da laboratorio che ci darà la curva dei composti chimici odoriferi presenti nel rifiuto campionato. Così facendo, senza ombra di dubbio, avremo la piena conoscenza di quali odori e di quale intensità sarà composto il nostro granulo che andremo a produrre.

SCOPRI DI PIU'
https://www.rmix.it/ - Quali Sistemi Impiegare per il Calcolo dell’Umidità nei Polimeri?
rMIX: Il Portale del Riciclo nell'Economia Circolare Quali Sistemi Impiegare per il Calcolo dell’Umidità nei Polimeri?
Informazioni Tecniche

Quali Sistemi Impiegare per il Calcolo dell’Umidità nei Polimeri?di Marco ArezioLa drastica riduzione dell’umidità nelle materie plastiche che devono essere usate per il processo di stampaggio di articoli destinati alla vendita, è una operazione molto importante, più importante di quanto normalmente si creda.Infatti, anche chi normalmente applica un trattamento di riduzione dell’umidità, deve assicurarsi che i livelli stessi siano sufficientemente bassi in modo da non creare difetti sul prodotto finale, variazioni di processo e guasti ai componenti delle presse. Come abbiamo trattato in altri articoli riguardanti le materie plastiche igroscopiche e non igroscopiche, l’importanza di deumidificazione del materiale, specialmente per quelle famiglie di polimeri che assorbono facilmente umidità, come il PC, il PA e il PET, è quella di preservare le catene polimeriche che, in presenza di una quantità eccessiva di acqua, sono soggette ad un degrado attraverso l’idrolisi. Infatti, in alcuni materiali plastici, la sola presenza di quantità di umidità di 200 ppm influirà negativamente sulle catene polimeriche, corte o tagliate, con la con la degradazione del peso molecolare del polimero. Ma per renderci conto della grandezza di misura di una quantità di umidità di 200 ppm consideriamo che questo valore corrisponde in percentuale allo 0,0200, quindi circa 9,1 grammi di acqua per 45.360 grammi di materiale. Una concentrazione di umidità alta nel polimero si può notare facilmente durante lo stampaggio degli articoli in seguito alla formazione di bolle sulle superfici dei prodotti, aumento della vaporizzazione in macchina e tutte le conseguenze negative sulla qualità del manufatto dal punto di vista meccanico ed estetico. Ma una quantità piccola di umidità, che interagisce comunque con le catene polimeriche, creando dei danni estetici e strutturali, non viene normalmente rilevata duranti le fasi di stampaggio ma sarà valutabile sulle caratteristiche del prodotto finale. E’ importante analizzare la resina plastica prima delle operazioni di stampaggio, asciugarla in modo completo e non cadere nella tentazione di miscelare parti di resina asciutta con parti umide, perché le caratteristiche qualitative delle parti asciutte verranno intaccate negativamente dalle parti umide. Ma quali sono i metodi per il controllo dell’umidità? Metodo della differenza di peso: il campione viene prelevato dagli imballi o dalla tramoggia e posizionato in un contenitore per il suo riscaldamento in fase di analisi. Prima del riscaldamento dei granuli viene fatta una pesata e, successivamente, si avvia il riscaldamento del materiale ad una temperatura consona alla famiglia di resina in fase di analisi. Raggiunta la temperatura ideale, la frazione di umidità uscirà dai granuli e, con lei, tutte le altre parti volatili che sono rappresentate da distaccanti, stabilizzanti, antistatici o altre sostanze chimiche che si trovavano nel polimero. Alla fine del processo si ripesa il granulo e lo si confronta con il peso precedente che rappresentava il granulo umido. Per semplicità si tenderebbe a considerare la differenza di peso come l’espressione della quantità di umidità presente nel materiale da impiegare. In realtà non è così, in quanto non si può esattamente sapere quanta umidità e quanti agenti chimici volatilizzati sono l’espressione della differenza di peso. Metodo dell’analisi dell’umidità specifica: l’operazione iniziale di analisi è comparabile con il sistema precedente, basato sulla differenza di peso, ma il processo viene realizzato in un’atmosfera di azoto secco, in cui l’umidità e i volatili verranno espulsi come nell’analisi precedente, ma la macchina calcolerà esattamente la parte di umidità presente nella materia prima senza curarsi delle parti volatili in quanto è in grado di separare i differenti composti chimici. In questo caso parleremo di umidità specifica, in quanto si valuterà precisamente il peso della stessa al netto dei volatili espulsi.Categoria: notizie - tecnica - plastica - riciclo - polimeri - umidità

SCOPRI DI PIU'
https://www.rmix.it/ - Rivestimenti Polimerici per Imballi Alimentari in Metallo
rMIX: Il Portale del Riciclo nell'Economia Circolare Rivestimenti Polimerici per Imballi Alimentari in Metallo
Informazioni Tecniche

Rivestimenti Polimerici per Imballi Alimentari in Metallodi Marco ArezioLe scatole in metallo per la conservazione degli alimenti hanno una lunga storia ma se nel passato, presentavano delle carenze dal punto igienico e tossicologico, specialmente a causa delle saldature che venivano fatte in lega Sn-Pb, attualmente la qualità dei prodotti costruiti sono decisamente elevate. Oggi la protezione degli alimenti è principalmente affidata allo strato polimerico di rivestimento interno, detto coating, che si frappone tra la parete di metallo e il cibo contenuto. La funzione primaria di questa barriera è quello di proteggere i prodotti alimentari dalla luce, l’ossigeno, gli enzimi, l’umidità, gli inquinanti e i microorganismi che ne comporterebbero la modificazione della struttura dell’alimento e la sua qualità. Lo scopo è anche quello di aumentare la vita utile dell’alimento o della bevanda che in condizioni normali, cioè non inscatolato, si deteriorerebbe con più velocità, in quanto le reazioni biochimiche, enzimatiche e l’attività dei microorganismi farebbero normalmente il loro corso. Quindi, per aumentare la vita degli alimenti, le confezioni in metallo vengono normalmente rivestite con film di resine sintetiche applicate sul foglio metallico ancora piano, film che assume spessori di pochi micron. La scelta del tipo di resina dipende dalle sue caratteristiche meccaniche, chimiche o termiche in base al contenuto che devono ospitare. Qui di seguito possiamo elencare le principali: • Colofonia è costituita principalmente da acido abietico, che viene normalmente additivata con ZnO per controllare le reazioni chimiche che si formano attraverso gli aminoacidi solforati delle proteine. • Resine Viniliche sono della famiglia delle resine termoplastiche, normalmente PVC, che hanno un’ottima resistenza agli acidi, ma hanno il difetto di assorbire i pigmenti degli alimenti. • Resine Fenoliche vengono composte attraverso la polimerizzazione della formaldeide e del fenolo che hanno un’ottima resistenza ai trattamenti termici, al PH e ai grassi. Attraverso il contenuto di formaldeide possiamo identificare due famiglie di resine fenoliche: Novolacche (termoplastiche) e Resoli (termoindurenti). • Resine Epossidiche sono resine termoindurenti costituite dal Bisfenolo A e dall’Epicloridrina che costituiscono il rivestimento più comune negli alimenti in scatola soprattutto nei cibi sott’olio a base di pesce. • Resine Poliestere sono resine termoindurenti ottenute da diversi monomeri come l’Anidride Ftalica, l’Anidride Maleica o l’Acido Fumarico, integrati con oli vegetali e pigmenti. Hanno la caratteristica della flessibilità dando allo strato della parete metallica questa caratteristica. • Resine Epossi-Fenoliche sono il risultato della polimerizzazione delle resine epossidiche con quelle fenoliche attraverso dei catalizzatori. Sono utilizzate come rivestimento trasparente di molte scatole metalliche in cui sono contenute conserve in olio, vegetali o cibi per animali. Per quanto riguarda le caratteristiche tossicologiche esistono norme di legge specifiche che pongono limiti sulla possibile migrazione delle sostanze del packaging negli alimenti, in cui si prendono in considerazione sia la migrazione specifica che la migrazione globale. Tuttavia la comunità scientifica ha dato nuovo impulso agli studi e alle ricerche sugli aspetti tossicologici relativi alle materie plastiche impiegate nell’industria alimentare, con particolare attenzione non più al singolo elemento che costituisce l’imballo, ma tiene in considerazione l’effetto cocktail che è dato da tutti gli elementi che vengono a contatto con il cibo, traslati nel tempo e con caratteristiche termiche differenti. Indubbiamente il cibo o la bevanda contenuti nel packaging al momento dell’imballo hanno determinate caratteristiche, ma a distanza di tempo e in condizioni climatiche differenti, la qualità del cibo che arriva sulla tavola potrebbe essere differente. Quindi sarebbe consigliabile una verificata attraverso un’analisi chimica, a campione, con uno strumento composto da un gascromatografo e uno spettrometro a mobilità ionica che, in modo semplice e rapido,  daranno la fotografia, analitica, della qualità del cibo o delle bevande.Categoria: notizie - tecnica - plastica - riciclo - metallo - imballi - packaging Vedi maggiori informazioni sulle materie plastiche

SCOPRI DI PIU'
https://www.rmix.it/ - Batterie Termiche: Una Rivoluzione nell'Accumulazione di Energia
rMIX: Il Portale del Riciclo nell'Economia Circolare Batterie Termiche: Una Rivoluzione nell'Accumulazione di Energia
Informazioni Tecniche

Struttura, Funzioni, Vantaggi e Applicazioni delle Batterie Termiche nell'Era dell'Energia Sostenibiledi Marco ArezioLe batterie termiche rappresentano una delle tecnologie più avanzate e promettenti nell'ambito dell'accumulo energetico. Questi sistemi sfruttano il calore come mezzo di stoccaggio energetico, offrendo soluzioni innovative per l'integrazione delle energie rinnovabili, la stabilizzazione delle reti elettriche e la gestione efficiente delle risorse energetiche. In questo articolo esploreremo la struttura delle batterie termiche, le loro funzioni, le differenze rispetto ad altre forme di accumulo energetico e i loro principali impieghi. Struttura e Componenti delle Batterie Termiche Le batterie termiche sono dispositivi che accumulano energia sotto forma di calore, il quale può essere rilasciato successivamente per produrre energia elettrica o per altre applicazioni termiche. La struttura di una batteria termica può variare in base alla tecnologia utilizzata, ma generalmente si compone di: Materiale di Accumulo: Il cuore della batteria termica è costituito da un materiale che può immagazzinare una grande quantità di energia termica. Questi materiali possono essere solidi (come i mattoni riscaldanti, ceramiche, o materiali a cambiamento di fase - PCM), liquidi (come oli termici o acqua) o addirittura gas. La scelta del materiale dipende dalla temperatura di esercizio desiderata e dalle specifiche applicazioni. Scambiatori di Calore: Essenziali per trasferire il calore dentro e fuori il materiale di accumulo, gli scambiatori di calore sono progettati per massimizzare l'efficienza del trasferimento termico. Possono essere a tubi, piastre o configurazioni più complesse a seconda delle necessità del sistema. Isolamento Termico: Per minimizzare le perdite di calore e garantire l'efficienza del sistema, le batterie termiche sono dotate di strati isolanti altamente efficaci. Questo isolamento è fondamentale per mantenere il calore accumulato per lunghi periodi. Sistemi di Controllo: Le batterie termiche moderne sono integrate con sistemi di controllo avanzati che monitorano la temperatura, la pressione e altri parametri operativi. Questi sistemi assicurano che l'accumulo e il rilascio del calore avvengano in maniera ottimale. Funzioni e Vantaggi delle Batterie Termiche Le batterie termiche hanno una varietà di funzioni che le rendono particolarmente utili in diversi contesti: Accumulo di Energia Rinnovabile: Una delle principali applicazioni delle batterie termiche è l'immagazzinamento dell'energia prodotta da fonti rinnovabili come il solare e l'eolico. Durante i periodi di sovrapproduzione energetica, il calore viene accumulato per essere rilasciato quando la produzione è inferiore alla domanda. Bilanciamento della Rete Elettrica: Le batterie termiche possono aiutare a stabilizzare la rete elettrica, immagazzinando energia durante i picchi di produzione e rilasciandola durante i picchi di domanda. Questo contribuisce a ridurre la necessità di centrali elettriche di riserva e a migliorare l'affidabilità della rete. Fornitura di Calore e Raffreddamento: In ambito residenziale, commerciale e industriale, le batterie termiche possono fornire calore o raffreddamento a seconda delle necessità. Ad esempio, possono essere utilizzate per riscaldare edifici durante l'inverno o per raffreddarli durante l'estate, migliorando l'efficienza energetica complessiva. Applicazioni Industriali: In molte industrie, il calore è una componente essenziale dei processi produttivi. Le batterie termiche possono essere utilizzate per recuperare e riutilizzare il calore residuo, riducendo così i costi energetici e le emissioni di carbonio. Differenze tra Batterie Termiche e Altri Sistemi di Accumulo Le batterie termiche si distinguono da altre forme di accumulo energetico, come le batterie chimiche (ad esempio, le batterie agli ioni di litio) e i sistemi di accumulo a pompaggio idroelettrico, per diversi motivi: Densità Energetica: Mentre le batterie chimiche tendono ad avere una densità energetica maggiore per unità di volume, le batterie termiche possono immagazzinare energia a costi inferiori per unità di energia immagazzinata, soprattutto quando si utilizzano materiali a basso costo come i mattoni riscaldanti. Durata e Cicli di Vita: Le batterie termiche generalmente hanno una durata di vita più lunga e possono sopportare un numero maggiore di cicli di carica e scarica senza significative perdite di capacità. Questo le rende particolarmente adatte per applicazioni a lungo termine. Efficienza: L'efficienza delle batterie termiche dipende molto dal materiale utilizzato e dalla qualità dell'isolamento. Tuttavia, possono essere meno efficienti in termini di conversione energetica rispetto alle batterie chimiche, soprattutto quando l'energia termica deve essere convertita in elettricità. Impatto Ambientale: Le batterie termiche spesso utilizzano materiali più abbondanti e meno tossici rispetto alle batterie chimiche. Inoltre, possono contribuire alla riduzione delle emissioni di carbonio recuperando e riutilizzando il calore residuo industriale. Applicazioni delle Batterie Termiche nel Settore Energetico Le batterie termiche trovano impiego in una vasta gamma di settori e applicazioni: Energie Rinnovabili: Nell'integrazione con impianti solari termici, le batterie termiche permettono di immagazzinare il calore prodotto durante il giorno per utilizzarlo durante la notte o nei giorni nuvolosi, migliorando l'affidabilità e l'efficienza degli impianti. Settore Residenziale e Commerciale: Le batterie termiche possono essere utilizzate per fornire riscaldamento e raffreddamento agli edifici, riducendo la dipendenza da fonti energetiche tradizionali e migliorando l'efficienza energetica. Industria: Le industrie che richiedono grandi quantità di calore, come quelle siderurgiche, chimiche e alimentari, possono beneficiare delle batterie termiche per ottimizzare i loro processi produttivi e ridurre i costi energetici. Reti di Teleriscaldamento: In molte città, le reti di teleriscaldamento possono integrare batterie termiche per immagazzinare il calore in eccesso prodotto da centrali termiche e rilasciarlo quando la domanda è più alta. Trasporti: Anche nel settore dei trasporti, in particolare nel ferroviario, le batterie termiche possono essere utilizzate per gestire l'energia termica generata dai motori e migliorare l'efficienza dei sistemi di riscaldamento e raffreddamento dei veicoli. Il Futuro delle Batterie Termiche nella Transizione Energetica Le batterie termiche rappresentano una tecnologia versatile e promettente per l'accumulo energetico. La loro capacità di immagazzinare e rilasciare calore in modo efficiente le rende ideali per una vasta gamma di applicazioni, contribuendo alla transizione verso un sistema energetico più sostenibile e resiliente. L'uso di materiali innovativi come i mattoni riscaldanti offre ulteriori vantaggi in termini di costi, durata e sostenibilità, rendendo le batterie termiche una soluzione chiave per affrontare le sfide energetiche del futuro.

SCOPRI DI PIU'
https://www.rmix.it/ - Salvaguardia del Patrimonio Culturale: Tecniche di Restauro dei Libri Antichi e delle Pergamene
rMIX: Il Portale del Riciclo nell'Economia Circolare Salvaguardia del Patrimonio Culturale: Tecniche di Restauro dei Libri Antichi e delle Pergamene
Informazioni Tecniche

Dalla pulizia alla deacidificazione, come restaurare e conservare i tesori storici. Scopri le sfide e le soluzioni per il recupero di pagine e pergamene dipintedi Marco Arezio Il restauro dei libri antichi e delle pergamene è un mondo affascinante e complesso. Si tratta di un'attività che richiede conoscenze scientifiche, abilità manuali e una profonda comprensione del valore storico e culturale di questi manufatti. Conservare questi beni preziosi non significa solo preservare il passato, ma anche garantire che le future generazioni possano accedere a testimonianze uniche della nostra storia. Problemi Comuni della Carta Antica La carta antica, soprattutto quella prodotta prima dell'avvento della carta industriale nel XIX secolo, presenta una serie di problemi specifici dovuti alla sua composizione e alle condizioni ambientali a cui è stata esposta. Vediamone alcuni: Acidificazione: Molta della carta antica è acida a causa dei processi di fabbricazione e dei materiali utilizzati. Questa acidità porta alla degradazione della cellulosa, rendendo la carta fragile e suscettibile alla rottura. Attacco biologico: Funghi, muffe e insetti come tarli e pesciolini d'argento possono attaccare la carta, causando danni significativi. Invecchiamento e ossidazione: L'esposizione alla luce e all'aria può causare l'ossidazione della carta, portando a ingiallimento e fragilità. Danni fisici: Strappi, pieghe, piegature e perdite di materiale sono comuni nei libri antichi e nelle pergamene. Tecniche di Restauro Il restauro dei libri antichi e delle pergamene richiede una serie di tecniche specifiche che variano a seconda del tipo e dell'entità del danno. Ecco alcune delle tecniche più comuni: Pulizia La pulizia è un passaggio fondamentale nel restauro, necessario per rimuovere polvere, sporco e residui superficiali senza danneggiare la carta. Può essere eseguita a secco o a umido: Pulizia a secco: Si utilizzano strumenti delicati come pennelli morbidi, gomme da restauro e spugne in lattice naturale per rimuovere sporco e polvere senza l'uso di liquidi. Pulizia a umido: Implica l'uso di soluzioni acquose o solventi specifici per rimuovere macchie o depositi più ostinati. Questa tecnica deve essere eseguita con estrema cautela per evitare danni ulteriori alla carta. Deacidificazione Per contrastare l'acidità della carta, i restauratori utilizzano processi di deacidificazione che neutralizzano gli acidi presenti e aggiungono una riserva alcalina per prevenire future acidificazioni. Questo può essere fatto mediante immersione in bagni di soluzioni alcaline o tramite applicazione di spray deacidificanti. Consolidamento e Risanamento La carta fragile e danneggiata necessita di essere consolidata per prevenire ulteriori deterioramenti. Questo può comportare l'applicazione di fogli di supporto, come carta giapponese (Washi), mediante adesivi reversibili e delicati. Le lacune e i buchi vengono riempiti utilizzando tecniche di intarsio con carta compatibile. Restauro delle Pergamene Le pergamene, essendo fatte di pelle animale, richiedono un approccio diverso rispetto alla carta. Il processo di restauro delle pergamene può includere: Umidificazione controllata: Per ammorbidire la pergamena e renderla più flessibile, facilitando la rimozione di pieghe e deformazioni. Consolidamento: L'applicazione di collanti specifici per pelle per riparare strappi e lacune. Pulizia delicata: Simile alla carta, ma con attenzione particolare per non rimuovere le scritture originali. Restauro delle Pagine Dipinte e delle Pergamene Dipinte Le pagine dipinte e le pergamene dipinte rappresentano una sfida ulteriore per i restauratori, poiché i pigmenti utilizzati possono essere molto sensibili ai processi di restauro. I colori possono sbiadire, alterarsi o addirittura scomparire se non trattati con estrema cura. Vediamo come affrontare queste delicate operazioni. Pulizia delle Pagine dipinte e Pergamene Dipinte La pulizia delle pagine e delle pergamene dipinte richiede tecniche estremamente delicate: Pulizia a secco: Utilizza pennelli molto morbidi per rimuovere la polvere superficiale senza toccare direttamente i pigmenti. Pulizia con solventi: Se necessario, si utilizzano solventi specifici, testati su aree non visibili per evitare danni ai colori. L'uso di tamponi di cotone e microspatole può aiutare a rimuovere le impurità senza disturbare i pigmenti. Consolidamento dei Pigmenti Il consolidamento dei pigmenti è essenziale per preservare i colori originali: Uso di adesivi reversibili: Adesivi come il collagene di pesce o la gelatina possono essere utilizzati per fissare i pigmenti senza alterare l'aspetto dell'opera. Applicazione di veli di protezione: Sottili strati di carta giapponese o tessuti non tessuti possono essere applicati temporaneamente durante il restauro per proteggere i colori. Recupero e Risincronizzazione dei Colori Quando i colori sono sbiaditi o alterati, è possibile utilizzare tecniche per recuperare l'aspetto originale: Reintegrazione pittorica: Utilizzando pigmenti reversibili e tecniche di ritocco, i restauratori possono reintegrare le aree danneggiate. Questo processo richiede una conoscenza approfondita dei materiali originali e delle tecniche artistiche utilizzate. Illuminazione UV: La luce ultravioletta può essere utilizzata per identificare i pigmenti originali e capire meglio come procedere con il restauro senza alterare i colori esistenti. Conservazione Dopo il Restauro Dopo il restauro, è fondamentale garantire una corretta conservazione per prevenire ulteriori danni. Ecco alcune linee guida essenziali: Condizioni Ambientali Temperatura e umidità: I libri e le pergamene devono essere conservati in ambienti con temperatura e umidità controllate. Idealmente, la temperatura dovrebbe essere intorno ai 18-20°C e l'umidità relativa tra il 40% e il 50%. Variazioni eccessive possono causare espansioni e contrazioni dannose. Luce: La luce, soprattutto quella solare diretta e la luce ultravioletta, può causare ingiallimento e degrado della carta. È consigliabile utilizzare illuminazione a bassa intensità e filtri UV nelle vetrine di esposizione. Manipolazione e Stoccaggio Manipolazione: Gli antichi manufatti devono essere maneggiati con guanti puliti e asciutti per evitare trasferimenti di oli e sporco dalla pelle. Si devono utilizzare supporti adeguati per prevenire stress fisici durante la manipolazione e la lettura. Stoccaggio: I libri devono essere conservati verticalmente sugli scaffali, supportati da reggilibri per evitare deformazioni. Le pergamene possono essere conservate in piani orizzontali in cassetti, avvolte in materiali inerti e stabili. Materiali di Conservazione: Utilizzare materiali di archivio di alta qualità, privi di acidi, come cartoni, scatole e carte di conservazione. Questi materiali contribuiscono a stabilizzare il microambiente attorno ai manufatti. Monitoraggio e Manutenzione Il monitoraggio regolare delle condizioni ambientali e fisiche dei libri e delle pergamene è essenziale. Ispezioni periodiche permettono di individuare tempestivamente eventuali segni di deterioramento, consentendo interventi conservativi mirati e tempestivi. Conclusioni Il restauro dei libri antichi e delle pergamene è un'arte che richiede competenze multidisciplinari e una profonda sensibilità verso il patrimonio culturale. Le tecniche di restauro, sebbene complesse, mirano a preservare l'integrità fisica e la storia intrinseca dei manufatti. La conservazione post-restauro, attraverso condizioni ambientali controllate e pratiche di manipolazione adeguate, è fondamentale per garantire la longevità di questi tesori storici. Investire nella cura e nel restauro dei libri antichi e delle pergamene è un investimento nella nostra memoria collettiva e nella trasmissione del sapere attraverso le generazioni.

SCOPRI DI PIU'
https://www.rmix.it/ - Poche Regole per Migliorare la Produzione di Flaconi in HDPE da Post-Consumo
rMIX: Il Portale del Riciclo nell'Economia Circolare Poche Regole per Migliorare la Produzione di Flaconi in HDPE da Post-Consumo
Informazioni Tecniche

La collaborazione tra produttori di polimeri riciclati e soffiatori di flaconi per una migliore qualità del prodottodi Marco ArezioOggi la produzione di flaconi di HDPE, impiegando totalmente o solo in parte granuli da post consumo, è un'attività ampiamente utilizzata dai produttori, a causa dei prezzi delle materie prime, per una questione ambientale e di marketing. Ma l'utilizzo di granuli in HDPE da post consumo potrebbe causare alcuni inconvenienti produttivi, se non si rispettassero determinate regole durante la produzione e il soffiaggio dei granuli. I problemi più comuni sono: - fori sulla superficie dei flaconi - Irregolarità superficiali - Basso valore di compressione - Bassa resistenza alla saldatura - Odore di detergente del prodotto finale - Bassa resistenza alla compressione verticale - Elevato scarto durante la produzione, il soffiaggio e il test visivo Per evitare questi inconvenienti dobbiamo intervenire nella produzione dei granuli attraverso alcune fasi: - scelta del materiale in ingresso - selezione - lavaggio - selezione ottica dei granuli - corretta analisi degli odori attraverso il test della gascromatografia a mobilità ionica - corretta filtrazione in fase di estrusione - gestione termica del processo - creazioni di ricette in base alla resistenza meccanica richiesta - controllo dell’umidità durante le fasi di imballo - corretto stoccaggio del prodotto Inoltre vi sono alcune accortezze da seguire durante le fasi di soffiaggio e confezionamento: - verifica miscele polimeriche in base alla forma e alla dimensione del flacone - controllo della fase di estrusione del polimero in macchina - controllo delle temperature - tempi Parison - verifica dei punti di incollaggio ed eventualmente modifica della miscela riciclata - test sulla qualità delle superfici e identificazione dei problemi e delle cause - controllo della corrispondenza dei colori richiesti e modifica delle ricette - test sulla resistenza del flacone pieno e sotto carico ed eventuale soluzione dei problemi - controllo della trasparenza o semitrasparenza dei flaconi, se richiesto, con eventuale modifica delle ricette Come abbiamo detto, la produzione di flaconi in HDPE (polietilene ad alta densità) riciclato, derivante da materiale post-consumo, è diventata una prassi sempre più diffusa tra i produttori. Le motivazioni dietro questa scelta sono molteplici: dal risparmio economico derivante dall'uso di materie prime meno costose, agli innegabili vantaggi ambientali, fino all'impatto positivo in termini di immagine aziendale. Nonostante questi benefici, la trasformazione di HDPE riciclato in flaconi di qualità non è priva di sfide tecniche. Uno dei problemi principali riscontrati nella produzione di questi contenitori include la presenza di fori e irregolarità sulla superficie, che possono compromettere l'integrità del flacone. Questi difetti sono spesso causati da impurità non adeguatamente separate nel processo di riciclo o da una miscelazione non ottimale del materiale. Altri problemi comuni includono una bassa resistenza alla compressione e alla saldatura, problematiche che possono essere direttamente correlate alla degradazione del materiale durante le fasi di lavorazione e riciclo. Un'altra problematica importante è la gestione degli odori: i flaconi possono acquisire un odore di detergente, residuo delle sostanze chimiche utilizzate in precedenza nei contenitori, se il processo di lavaggio non è eseguito con la dovuta attenzione. Inoltre, la resistenza alla compressione verticale può risultare insufficiente, e lo scarto di produzione durante il soffiaggio e i test visivi può aumentare notevolmente se il processo non è attentamente monitorato e ottimizzato. Per affrontare questi problemi, è fondamentale un controllo rigoroso e metodico del processo di produzione. Inizia dalla selezione accurata del materiale di scarto, che deve essere il meno degradato e il più pulito possibile. Il lavaggio deve essere eseguito meticolosamente per eliminare tutte le impurità e i residui chimici, mentre la selezione ottica dei granuli consente di scartare quelli di qualità inferiore. È altrettanto importante l'analisi degli odori, per la quale si utilizza la gascromatografia a mobilità ionica, una tecnica che permette di identificare e quantificare le molecole responsabili degli odori indesiderati. Durante l'estrusione, una filtrazione efficace può rimuovere le ultime impurità, e una gestione attenta della temperatura impedisce ulteriori degradazioni del polimero. La creazione di ricette personalizzate in base alle resistenze meccaniche richieste dai diversi tipi di flaconi è un altro passo critico. La corretta gestione dell'umidità durante le fasi di imballaggio e un adeguato stoccaggio sono essenziali per mantenere la qualità del materiale fino alla sua trasformazione. Il soffiaggio e il confezionamento richiedono ulteriori accortezze: la verifica delle miscele polimeriche in base alla forma e alla dimensione del flacone è cruciale, come lo è il controllo delle temperature e dei tempi di estrusione. I test sulla qualità delle superfici e sulla resistenza del flacone pieno e sotto carico aiutano a identificare problemi e cause, permettendo interventi tempestivi. Infine, una stretta collaborazione tra i fornitori di granuli di HDPE riciclato e i produttori di flaconi è vitale. Questo rapporto consente di affinare continuamente la qualità del materiale riciclato e di anticipare problemi che potrebbero compromettere il prodotto finale. In conclusione, sebbene l'utilizzo di HDPE riciclato presenti sfide notevoli, con un attento monitoraggio e ottimizzazione dei processi, è possibile produrre flaconi non solo economicamente vantaggiosi ma anche di alta qualità, che rispondono alle esigenze del mercato e contribuiscono significativamente alla sostenibilità ambientale.

SCOPRI DI PIU'
https://www.rmix.it/ - Nel 1678 con Robert Hooke nasce la Strada per la Reologia dei Polimeri Plastici
rMIX: Il Portale del Riciclo nell'Economia Circolare Nel 1678 con Robert Hooke nasce la Strada per la Reologia dei Polimeri Plastici
Informazioni Tecniche

Robert Hooke il precursore della reologia dei polimeridi Marco ArezioSebbene la reologia non sia un concetto applicabile solo alle materie plastiche e, quindi al mondo dei polimeri, ma spazi anche nel settore farmaceutico, alimentare, delle gomme e della ceramica, la reologia applicata ai polimeri plastici ha una componente importante nelle applicazioni di tutti i giorni.E’ evidente che nel 1678 non esistevano i polimeri plastici, ma la storia ci ha insegnato a fare tesoro degli studi e delle scoperte che uomini brillanti, come Robert Hooke, hanno realizzato nella loro vita e che, le conclusioni scientifiche da loro sperimentate, come la legge di Hook, inerente ai comportamenti elastici delle materie prime, ci accompagnano ancora oggi. Robert Hook nasce il 18 Luglio del 1635 in Inghilterra presso Freshwater, nell'Isola di Wight, da una famiglia di umili origini, dove il padre esercitava la sua professione come curato della locale parrocchia. Di salute cagionevole si dimostrò molto incline alla pittura tanto che, nel 1648, alla morte del padre, si trasferì a Londra e andò a lavorare come apprendista presso la bottega del pittore Peter Lely, frequentando comunque la scuola che lo portò nel 1653 all’università di Oxford. Nel 1662 fu assunto alla Royal Society con un ruolo inedito per l’epoca, in quanto fu il primo scienziato ad eseguire esperimenti tecnici con un regolare contratto di lavoro. Nel suo mansionario c’era il compito di eseguire settimanalmente degli esperimenti scientifici da mostrare durante le riunioni dei soci della Royal Society. La sua attività di ricerca e di sperimentazione lo portò al vertice della società scientifica in cui lavorava, ma si attrasse le invidie e le divergenze da parte di altri scienziati, uno tra questi fu Newton. Tra le molteplici attività scientifiche svolte, dimostrò il comportamento elastico della materia, coniando un insieme di teorie che sono racchiuse nella legge di Hook, a lui intitolata. Nel 1678 Hook arrivò a dimostrare che un corpo elastico, quale ad esempio una molla, subisce una deformazione direttamente proporzionale alla forza ad esso applicato. Nel corso degli anni successivi molti scienziati lavorarono, migliorarono e sperimentarono, nuovi concetti sul comportamento elastico della materia, come la legge di Newton sulla viscosità nel 1687, il concetto di viscoelasticità da James Clerk Maxwell nel 1868, l’effetto delle sollecitazioni composte dei materiali a cura di Ludwig Boltzmann nel 1878, fino ad arrivare nel 1920 quando viene fondata la società di reologia dagli scienziati Eugene C. Bingham, Wolfgang Ostwald, Ludwig Prandtl e Markus Reiner. Nel mondo odierno dei polimeri vergini e riciclati i comportamenti reologici sono di primaria importanza per poter realizzare ricette corrette, per trasformare le materie prime attraverso lo stampaggio, l’estrusione, il soffiaggio, la termoformatura e per creare articoli apprezzabili sia dal punto di vista estetico che meccanico. Categoria: notizie - tecnica - plastica - reologia - polimeri - storia

SCOPRI DI PIU'
https://www.rmix.it/ - Resine termoindurenti
rMIX: Il Portale del Riciclo nell'Economia Circolare Resine termoindurenti
Informazioni Tecniche

Proprietà chimico-fisiche, tecnologiche e relativi settori di applicazione delle resine termoindurentidi Marco ArezioGenericamente una resina può essere definita come prodotto organico, solido o semi-solido, d’origine naturale o sintetica, senza un preciso punto di fusione e, generalmente, ad alto peso molecolare. Le resine possono essere suddivise in: termoplastichetermoindurenti Le resine termoplastiche sono polimeri lineari o ramificati che possono fondere o rammollire senza subire alterazioni della composizione chimica. Possono pertanto essere forgiate in qualsiasi forma usando tecniche quali lo stampaggio ad iniezione e l’estrusione. Il processo di fusione-solidificazione del materiale può essere ripetuto senza apportare variazioni sostanziali alle prestazioni della resina. Generalmente i polimeri termoplastici sono amorfi e non cristallizzano facilmente, a seguito di un raffreddamento, poiché le catene polimeriche sono molto aggrovigliate. Anche quelli che cristallizzano non formano mai dei materiali perfettamente cristallini, bensì semi-cristallini caratterizzati da zone cristalline e zone amorfe. Le resine amorfe, e le regioni amorfe delle resine parzialmente cristalline, mostrano il fenomeno della transizione vetrosa, caratterizzato dal passaggio, a volte anche abbastanza brusco, dallo stato vetroso a quello gommoso. Questa transizione coincide con l’attivazione di alcuni movimenti a lungo raggio delle macromolecole che compongono il materiale. Al di sotto della Temperatura di transizione vetrosa (Tg), le catene polimeriche si trovano in posizioni bloccate. Sia la temperatura di fusione sia quella di transizione vetrosa aumentano all’aumentare della rigidità delle catene che compongono il materiale e all’aumentare delle forze di interazione intermolecolari. La resina termoindurente è un materiale molto rigido costituito da polimeri reticolati nei quali il moto delle catene polimeriche è fortemente limitato dall’elevato numero di reticolazioni esistenti. Durante il riscaldamento subiscono una modificazione chimica irreversibile. Le resine di questo tipo, sotto l’azione del calore nella fase iniziale, rammolliscono (diventano plastiche) e, successivamente, solidificano. Contrariamente alle resine termoplastiche, quindi, non presentano la possibilità di subire numerosi processi di formatura durante il loro utilizzo. Le resine termoindurenti, come abbiamo visto, sono materiali molto rigidi nei quali il moto delle catene polimeriche è fortemente vincolato da un numero elevato di reticolazioni esistenti. Infatti, durante il processo di produzione subiscono modifiche chimiche irreversibili associate alla creazione di legami covalenti trasversali tra le catene dei pre-polimeri di partenza. La densità delle interconnessioni e la natura dipendono dalle condizioni di polimerizzazione e dalla natura dei precursori: generalmente essi sono sistemi liquidi, o facilmente liquefacibili a caldo, costituiti da composti organici a basso peso molecolare, spesso multifunzionali, chimicamente reattivi, a volte in presenza di iniziatori o catalizzatori. Nella maggior parte dei casi essi subiscono una polimerizzazione in situ mediante reazioni di policondensazione e poliaddizione che li trasformano in termoindurenti ovvero in complesse strutture reticolate tridimensionali vetrose, insolubili nei solventi più comuni, infusibili e degradabili se riscaldate ad altissime temperature. Molte formulazioni richiedono la presenza di un comonomero, definito generalmente agente indurente, dotato di due o più gruppi funzionali reattivi, e/o di calore e/o di radiazioni elettromagnetiche per reticolare. La reazione di reticolazione o cura inizia con la formazione e la crescita lineare di catene polimeriche che presto iniziano a ramificare. Man mano che la cura procede il peso molecolare cresce rapidamente e le dimensioni molecolari aumentano perchè molte catene iniziano a legarsi covalentemente tra di loro creando un network di peso molecolare infinito. La trasformazione da un liquido viscoso ad un gel elastico, chiamata “gelificazione”, è improvvisa ed irreversibile e comporta la formazione della struttura originaria del network tridimensionale. Prima della gelificazione, in assenza di agente reticolante, le particelle di resina sono separate tra di loro o interagiscono solo in virtù di deboli forze intermolecolari reversibili, forze di van der Waals. Quindi la resina termoindurente è solubile in appropriati solventi Al progredire della reazione di reticolazione si formano legami covalenti intermolecolari, gel covalente, permanendo ancora le interazioni deboli. A differenza del gel di valenza secondaria che può essere rotto senza difficoltà, non esiste alcun solvente così energico da causare la rottura dei legami covalenti. Quindi la struttura macromolecolare creata da questa trasformazione non si scioglie completamente ma si rigonfia nel solvente perché contiene ancora tracce di monomero, libero o aggregato, e molecole ramificate solubili, presentandosi quindi sotto forma di un sistema bifasico sol-gel. E’ questa la struttura originaria del network tridimensionale termoindurito. Un altro fenomeno che può verificarsi durante la reazione di cura è la “vetrificazione”, ovvero la trasformazione di un liquido viscoso o di un gel elastico in un solido vetroso, che segna una variazione nel controllo cinetico del meccanismo di reazione passando da uno di tipo chimico ad uno di tipo diffusivo. La velocità di reazione decade rapidamente sia perchè la concentrazione di monomero reattivo è diminuita sia perchè la sua diffusione verso i siti reattivi del bulk polimerico è rallentata dalla presenza dei cross-links tra le catene. Comunque, il fatto che si riscontri un ulteriore aumento di densità, testimonia che le reazioni chimiche continuano ad avvenire ma a velocità molto più basse. Tra le varie tipologie di resine termoindurenti, si trovano quelle epossidiche, che sono sostanzialmente dei polieteri, ma mantengono questo nome sulla base del materiale di partenza utilizzato per produrle e in virtù della presenza di gruppi epossidici nel materiale immediatamente prima della reticolazione. Il principale utilizzo delle resine epossidiche è nel campo dei rivestimenti, in quanto queste resine combinano proprietà di flessibilità, adesione e resistenza chimica. Una larga varietà di resine sono formulate per soddisfare le più svariate esigenze tenendo conto dei seguenti parametri: Reattività: il gruppo epossidico reagisce con una grande varietà di reagenti chimici. Flessibilità: la distanza dei gruppi epossidici può essere variata in funzione del peso molecolare, ottenendo sistemi reticolati tridimensionali a maglie più o meno larghe e quindi prodotti più o meno flessibili ed elastici. Resistenza chimica ed adesione: i legami chimici predominanti sono carboniocarbonio e carbonio-ossigeno, legami dotati di notevole inerzia chimica. Gli ossidrili sono secondari e quindi di bassa reattività. Alla polarità delle molecole ed agli ossidrili sono da attribuire le elevate forze di adesione ai substrati metallici. Stabilità termica: strettamente legata alla densità di reticolazione. Applicazioni: i sistemi epossidici hanno assunto una grande importanza in quei settori dove si richiedono elevate prestazioni alle sollecitazioni termiche, meccaniche, chimiche ed elettriche. Vengono impiegati nell’industria automobilistica, spaziale, aeronautica, navale, elettronica, impiantistica, come componenti principali nelle vernici, adesivi, impermeabilizzanti, materiali compositi e per circuiti stampati.Categoria: notizie - tecnica - plastica - resine termoindurenti - polimeri

SCOPRI DI PIU'
https://www.rmix.it/ - Stampaggio Rotazionale: dalla Terracotta al Cioccolato fino alla Plastica
rMIX: Il Portale del Riciclo nell'Economia Circolare Stampaggio Rotazionale: dalla Terracotta al Cioccolato fino alla Plastica
Informazioni Tecniche

La storia dello stampaggio rotazionale con materiali diversidi Marco ArezioIl processo dello stampaggio tramite il processo rotazionale sembra una conquista recente, nata in concomitanza con l’esplosione dell’uso della plastica dopo la seconda guerra mondiale. In realtà, anche se con altri materiali, la costruzione di oggetti attraverso il processo di rotazione dello stampo, si può far salire al periodo egizio, greco e anche cinese, i cui artigiani realizzavano oggetti in ceramica per l’uso quotidiano ed artistico. Sono avvenuti, infatti, numerosi ritrovamenti di ceramiche sferiche o semisferiche che hanno fatto riflettere di quanto fosse stata diffusa questa tecnica costruttiva in quelle ere storiche. Un altro esempio documentato dell’uso di questo sistema produttivo è da far risalire intorno al 1600 d.C., periodo in cui i cioccolatieri svizzeri utilizzavano la tecnica rotazionale per creare uova di cioccolato cave, ma soprattutto dallo spessore uniforme. Bisogna aspettare però fino al 1855 quando l’inglese R. Peters introdusse lo stampaggio a rotazione biassiale per la produzione industriale di involucri cavi, tra i quali anche gli elementi di protezione dei pezzi di artiglieria. La dimestichezza con cui i produttori si avvicinarono al sistema di iniezione rotazionale, permise numerose esperienze applicative su prodotti come la cera, ad opera di F.A. Voelke nel 1905, come il gesso per mano di R.J. Powell nei primi anni 20 del secolo scorso. A partire dagli anni ’50 del secolo scorso, con l’avvento delle materie plastiche, lo stampaggio rotazionale fu impiegato, per la prima volta, nella realizzazione delle teste delle bambole utilizzando il PVC in polvere e impiegando stampi di lega di nichel-rame. Fu davvero un colpo di fulmine per l’industria, infatti lo stampaggio rotazionale utilizzando le materie plastiche crebbe in maniera vertiginosa, creando sempre nuovi e più grandi prodotti nei settori commerciali più disparati. Se tra il 1950 e il 1960 l’applicazione di questo sistema riguardò prevalentemente i giocattoli o i piccoli accessori per la casa, ma nei periodi successivi, con la costruzione di nuovi e sempre più grandi stampi, si realizzarono prodotti industriali di grandi dimensioni, come i contenitori di sostanze chimiche, cisterne per fertilizzanti e diserbanti, serbatoi dell’acqua e di carburanti, serbatoi per auto, barriere stradali, barche, canoe, boe e molti altri prodotti. Categoria: notizie - tecnica - plastica - stampaggio rotazionale

SCOPRI DI PIU'
https://www.rmix.it/ - LDPE Riciclato da Post Consumo: 60 Tipologie di Odori Ostacolano la Vendita
rMIX: Il Portale del Riciclo nell'Economia Circolare LDPE Riciclato da Post Consumo: 60 Tipologie di Odori Ostacolano la Vendita
Informazioni Tecniche

LDPE Riciclato da Post Consumo: 60 Tipologie di Odori Ostacolano la Venditadi Marco ArezioLa raccolta differenziata degli imballi della plastica, specialmente per quelli in LDPE,  è una conquista moderna che permette, attraverso il riciclo, il riutilizzo degli imballi esausti con il duplice vantaggio di ridurre l’impronta carbonica e il prelievo di risorse naturali dalla terra per creare nuovi prodotti. Molto si deve ancora fare però nel settore del riciclo in quanto la quota di plastica che viene raccolta e riutilizzata è ancora largamente inferiore a quella che viene prodotta ogni giorno. Questo scompenso quantitativo tra quanto si ricicla e quanto si produce di nuovo ha molte cause: • Limitata diffusione della raccolta differenziata nel mondo • Difficoltà nel riciclo di molti imballi plastici multistrato • Bassa qualità della materia prima riciclata • Mancanza di una cultura del riciclo Nei paesi dove la raccolta differenziata è avviata e funziona stabilmente, la produzione di materia prima riciclata soffre di un giudizio abbastanza negativo sulla qualità della stessa, causata da fattori che dipendono anche, ma non solo, dalla filiera del riciclo meccanico. Questa valutazione negativa incide in maniera rilevante sulle vendite della materia prima riciclata, relegando il suo uso solo ad alcuni settori di impiego, riducendone quindi i quantitativi vendibili e abbassando il prezzo medio per tonnellata, che comporta, a sua volta, un basso margine economico per le aziende che riciclano. Inoltre, meno granulo riciclato si vende, meno rifiuto plastico si può riciclare e più grande diventa il problema del suo smaltimento, rischiando di far finire in discarica la preziosa materia prima che potrebbe essere riutilizzata. Tra i problemi di cui soffre la materia prima riciclata, nonostante l’enorme sviluppo impiantistico del settore, quello dell’odore è tra i più sentiti dai clienti che potrebbero utilizzarla per produrre film, imballi rigidi, materiali per il settore edile, per l’automotive, giardinaggio, mobili e molti altri prodotti. Ad oggi la percezione dell’odore di una materia prima plastica proveniente dal post consumo è affidata, in modo del tutto empirico, ad una sensazione nasale di chi la produce e di chi la utilizza, che valutano in modo estremamente soggettivo sia la tipologia che l’intensità degli odori presenti nella plastica riciclata. Valutazione che poi si può scontrare con il cliente finale che comprerà il prodotto realizzato e darà un’ulteriore valutazione, personale, dell’odore. Il naso umano è sicuramente uno strumento eccellente ma ogni persona percepisce le sollecitazioni odorose in modo del tutto personale, ed è per questo che, in casi particolari, si assoldano gruppi di persone che insieme fanno valutazioni sugli odori da intercettare. Se prendiamo ad esempio la filiera del riciclo delle materie plastiche, partendo dalla raccolta differenziata, si è visto che i sacchi in LDPE e gli imballi flessibili che vanno al riciclo, portano con sé un numero elevatissimo di sostanze chimiche che generano odori nella filiera del riciclo. La rilevazione delle fonti degli odori non è stata studiata attraverso metodi sensoriali empirici, quindi attraverso il naso umano, ma attraverso un’indagine chimica svolta da uno strumento di laboratorio che consiste in un gascromatografo con uno spettrometro a mobilità ionica. Questo strumento ha analizzato i componenti chimici, all’interno di una larga campionatura di LDPE riciclato proveniente dalla raccolta differenziata, andando ad individuare 60 tipologie di sostanze chimiche che generano odori. La campionatura analizzata proveniva dal ciclo meccanico tradizionale di riciclo in cui il materiale viene selezionato, triturato e lavato con una permanenza in acqua di circa 15 minuti. Gli odori più comuni percepiti dal naso umano, di questa campionatura sono stati:• Muffe • Urina • Formaggio • Terra • Fecale • Sapone • Caffè • Sudato • Peperone Queste famiglie di odori percepite sono create da circa 60 composti chimici che si associano durante la fase di raccolta e lavorazione della plastica riciclata. Si sono individuati alcuni punti critici:  Il sacco della raccolta differenziata che contengono gli imballi plastici domestici da selezionare in cui troviamo diverse tipologie di polimeri, possono contenere residui di sostanze come detersivi, cibo, oli, disinfettanti, prodotti chimici, creme e molti altri. Questo miscuglio di elementi chimici diversi si può legare alla superficie della plastica ma, in funzione del tempo di sodalizio, potrebbe anche penetrare al suo interno.  La selezione tra le varie plastiche, attraverso macchine a lettori ottici, crea una certa percentuale di errore che si traduce nella possibilità di avere quantità di plastiche miste all’interno della frazione selezionata.  La fase di lavaggio del macinato plastico ha la funzione di dividere ulteriormente, per densità, le plastiche immesse e ha lo scopo di pulirle dai residui di prodotti che gli imballi hanno contenuto o sono venuti in contatto. Ad eccezione del PET, gli altri polimeri provenienti dalla raccolta differenziata, vengono generalmente lavati in acqua fredda, processo che non incide in maniera rilevante nel processo di pulizia al fine di abbattere gli odori.  La fase di estrusione del materiale lavato, per la formazione del granulo, potrebbe comportare un degradamento della materia prima in cui sono presenti frazioni di polimeri diversi da quella principale che quindi fonderanno a temperature diverse. Questo può causare la formazione di elementi chimici che daranno origine ad odori. Intervenire su queste fasi porterebbe a miglioramento significativo della qualità dei polimeri da post consumo prodotti, non solo attraverso un abbattimento delle tipologie e dell’intensità degli odori, ma ne migliorerebbe anche le performace tecniche. Il controllo analitico degli odori, attraverso strumenti che ne rilevino le genesi chimiche, può aiutare non solo in fase di certificazione del livello odoroso della materia prima finale in modo inequivocabile e non più empirico, ma darebbe un importante supporto anche in fase di creazione di ricette sulle tipologie di materia prima da usare durante le fasi di riciclo del rifiuto plastico, sull’individuazioni delle fonti migliori e sui risultati dei processi produttivi nello stabilimento (selezione, lavaggio ed estrusione). Ridurre gli odori e migliorare la qualità del granulo da post consumo porterebbe all’apertura di nuovi mercati nei quali si potrebbe impiegare la materia prima riciclata al posto di quella vergine con un vantaggio ambientale, economico e industriale.Categoria: notizie - tecnica - plastica - riciclo - LDPE - post consumo - odoriVedi maggiori informazioni sul riciclo dell'LDPE

SCOPRI DI PIU'
https://www.rmix.it/ - Plastica Riciclata: Come Impiegare la Gas Cromatografia a Mobilità Ionica
rMIX: Il Portale del Riciclo nell'Economia Circolare Plastica Riciclata: Come Impiegare la Gas Cromatografia a Mobilità Ionica
Informazioni Tecniche

Plastica Riciclata: Come Impiegare la Gas Cromatografia a Mobilità Ionica per la ricerca analitica degli odoridi Marco ArezioCome abbiamo ampiamente descritto in altri articoli, i cui links li troverete nella parte finale di questo intervento, il mondo delle plastiche riciclate o da riciclare, specialmente quelle che provengono dalla raccolta differenziata, definite da post consumo, hanno il problema di gestire la componente odorosa che si instaura all’interno della materia prima riciclata. Odori che provengono dalla composizione eterogenea della plastica nella fase di raccolta, dai processi di fermentazione dei residui organici incorporati nelle plastiche da riciclare, dalle acque di lavaggio non gestite in maniera corretta, dalla degradazione in fase di estrusione dei granuli, di plastiche mischiate a quelle principali e di sostanze chimiche assorbite dai contenitori durante la loro funzione di imballo, come i tensioattivi per esempio. La produzione di granuli riciclati fatta senza il controllo chimico della materia in ingresso, del controllo delle acque e dei materiali estrusi per la vendita, è come guidare nella notte a fari spenti. L’impegno delle risorse aziendali per acquistare la materia prima da riciclare, i costi di trasformazione, i costi logistici e quelli di vendita, potrebbero essere messi a rischio dall’impossibilità di produrre una materia prima in plastica riciclata che soddisfi le aspettative del cliente finale in fatto di odori. Il controllo analitico degli odori nelle materie di ingresso ci permettere di selezionare i fornitori, dividerli per categorie e stilare ricette di produzione che tengano conto dell’impronta odorosa dei prodotti in entrata. Lo stesso controllo analitico verrà utilizzato per controllare il processo di produzione e la formulazione corrette di ricette, non solo dal punto di vista tecnico estetico, ma anche odorifero, per dare al cliente finale una qualità in più sempre più ricercata dal mercato. E, infine, il commerciale può serenamente proporre un granulo che ha una patente per l’odore, non opinabile o discutibile attraverso altri nasi, soprattutto da quelli che sono addetti all’acquisto del granulo prodotto, ma attraverso una certezza fornita da un’analisi chimica dei componenti odorosi presenti nel prodotto. Come funziona questa tecnologia da laboratorio La tecnologia alla base della strumentazione di cui stiamo parlando è la GC IMS (Gas Cromatografia a mobilità ionica). Questa tecnologia si applica alle sostanze organiche volatili provenienti da uno spazio di testa statico generato in condizione standardizzate. Una colonna gas cromatografica permette il frazionamento preliminare delle sostanze volatili introdotte prima della entrata nel cuore dello strumento. Il cuore dello strumento è costituito da un tubo metallico di 9,8 cm al cui interno viene creato un campo elettrico di 5.000 Volt; le sostanze volatili provenienti dalla colonna cromatografica vengono ionizzate tramite una sorgente contenente trizio (una sostanza radioattiva a bassa intensità). Il processo di ionizzazione avviene a pressione ambiente e si basa sull’interazione fra l’acqua presente in tracce nel gas di azoto che fa da “carrier”: Il processo chimico-fisico di ionizzazione è tale per cui le sostanze volatili organiche come alcoli, aldeidi, chetoni, acidi carbossilici composti aromatici, ammine, tioli , composti alogenati , etc , vengono caricati elettricamente e rese quindi rilevabili dalla piastra di Faraday posta alla fine del tubo di volo. Le sostanze sopracitate sono quelle responsabili degli “odori “che vengono percepiti dall’ olfatto umano: va segnalata la “estrema sensibilità” del sistema di rilevazione che raggiunge il livello delle parti per miliardo (ppb). Il naso elettronico è quindi costituto da un rilevatore GC IMS, con accoppiato un autocampionatore che ha il compito di riscaldare i flaconi di vetro da 20 ml in cui si trovano le sostanze (liquide o solide) che sviluppano le sostanze volatili. La modalità di esecuzione delle analisi è estremamente semplice, dato che non vi è alcuna preparazione del prodotto da analizzare. Nel settore delle plastiche riciclate o da riciclare è veramente semplice preparare i campioni ed ottenere i tests. Il risultato analitico è costituito da un diagramma a tre dimensioni come una carta geografica delle montagne: la “carta geografica” indica il tempo di eluizione dalla colonna cromatografica, il tempo di volo e l’intensità del segnale di ogni singola sostanza organica volatile. Questa strumentazione permette quindi di confrontare in maniera “oggettiva“ delle plastiche riciclate che emettono delle sostanze organiche volatili percepibili all’ odorato.Categoria: notizie - tecnica - plastica - riciclo - gascromatografia a mobilità ionica - odori Links Utili:GRANULO IN PLASTICA RICICLATA DA POST CONSUMO CON CERTIFICAZIONE DELL’ODORE CONTROLLO ANALITICO DEGLI ODORI NEL SETTORE DEL RICICLO ODORI NEI POLIMERI RICICLATI: COME AFFRONTARE IL PROBLEMA? ODORI NELLA PLASTICA: CONTROLLARE LA FILIERA PER EVITARE CONTESTAZIONIINFO SULLA MACCHINA

SCOPRI DI PIU'
https://www.rmix.it/ - Micro Laminazione delle Pellicole Plastiche
rMIX: Il Portale del Riciclo nell'Economia Circolare Micro Laminazione delle Pellicole Plastiche
Informazioni Tecniche

Sempre più sottili, robuste, elastiche e decorabili, le micro pellicole in plastica aprono nuovi orizzonti creatividi Marco ArezioLe micro pellicole polimeriche sono ormai diffusissime in molti ambiti, come quello dell’arredamento, dell’edilizia, dei prodotti protettivi, dell’automotive, dell’alimentare, del packaging e in molti altri campi. La tecnologia formulativa e produttiva raggiunta da questi laminati, sta permettendo un’esaltazione del design e del marketing attraverso la trasformazione di prodotti, non solo dal punto di vista estetico, ma anche delle prestazioni tecniche. In realtà nel nostro immaginario le collochiamo in un ambito temporale recente, ma questi sottili laminati plastici si possono datare al 1939, quando furono per la prima volta impiegati come elementi rifrangenti nella segnaletica stradale. Le applicazioni, come abbiamo visto, sono davvero numerose e in aggiornamento anno dopo anno, come per esempio le pellicole sulle lenti degli occhiali o sulle visiere dei caschi, a volte con scritte sulla parte esterna che non impediscono di vedere correttamente dall’interno. Possiamo citare anche le pellicole in PVB realizzate con stampa a getto di inchiostro da inserite a sandwich tra due vetri, in modo che le immagini diventino eterne in quanto protette dai vetri. Interessanti anche le pellicole per la conservazione dei cibi acquistabili al supermercato ci sono quelle detector, in grado di evidenziare deterioramenti o di rilevare la presenza di OGM. Nel settore dell’edilizia, già da molto tempo, si utilizzano pellicole polimeriche da applicare ai vetri per migliorare la sicurezza, ridurre l’irraggiamento solare che causa la trasmissione di calore all’interno dei locali con indubbi risparmi energetici, ridurre la rifrangenza della luce in modo da oscurare gli ambienti e pellicole schermati in grado di ridurre l’immissione di più del 90% delle onde elettromagnetiche all’interno dei locali. Nel campo della sicurezza, esistono pellicole composte da decine di strati di sottilissimo poliestere, che vengono impiegate per la riduzione delle conseguenze delle esplosioni. Infatti, l’elasticità che questi strati di poliestere conferisco al vetro, grazie al loro allungamento che può arrivare al 150%, aiutano il vetro a sopportare meglio l’onda d’urto di una esplosione. Nel settore dell’illuminotecnica e nell’elettronica, queste micro pellicole sono studiate per ottimizzare la luminosità di telefonini, schermi, computer, sia per il trasporto della luce stessa. Sono in commercio pellicole capaci di riflettere o trasmettere lunghezze d’onda luminosa diverse nello spettro del visibile e dell’infrarosso, costituite da centinaia di strati polimerici i cui spessori sono dell’ordine di una lunghezza d’onda luminosa. In questi campi la scienza della fisica delle superfici adiacenti ha reso possibile il progredire della tecnica della micro replicazione, la ripetizione continua milioni di volte di una microstruttura 3D costituita da minuscoli prismi o infinitesime sfere invisibili ad occhio nudo, che consente la realizzazione di superfici regolari con specifiche proprietà, come quella di catturare la luce del sole da angoli diversi e distribuirla verso l’interno, o di rifletterla totalmente verso l’esterno. Categoria: notizie - tecnica - plastica - pellicole plastiche - packaging - laminazione

SCOPRI DI PIU'
https://www.rmix.it/ - Cosa è il Processo di Devulcanizzazione per il Riciclo degli Pneumatici
rMIX: Il Portale del Riciclo nell'Economia Circolare Cosa è il Processo di Devulcanizzazione per il Riciclo degli Pneumatici
Informazioni Tecniche

Come avviene il processo di Devulcanizzazione per il Riciclo degli Pneumaticidi Marco ArezioSe pensiamo che ogni macchina, moto, camion, corriera o qualsiasi altro mezzo su ruote impiega gli pneumatici per un periodo medio di 1-2 anni, per poi sostituirli con nuove coperture, possiamo incominciare a capire quanti pneumatici usati ci possono essere nel mondo.Se poi facciamo un rapido conto di quanti milioni di mezzi su ruote circolino sulla terra, possiamo facilmente moltiplicare il numero di mezzi per il numero medio degli pneumatici che montano, ottenendo un numero strabiliante. Questo numero strabiliante ogni 1-2 anni esprime i rifiuti, sotto forma degli pneumatici esausti, con cui dobbiamo fare i conti, rifiuti che se non trattati correttamente e rimessi in circolo, gravano pericolosamente sull’ambiente. Se raccolti e gestiti correttamente gli PFU (gli pneumatici esausti) possono però diventare una risorsa perché al loro interno contengono gomma, acciaio e fibre tessili che attraverso un processo di riciclo possono generare materie prime seconde. In particolare, i polverini e granuli di gomma ottenuti dalla riduzione volumetrica degli pneumatici, se sottoposti ad azione meccanica, chimica, termica o irradiati con ultrasuoni, subiscono un processo definito devulcanizzazione, con risultati variabili in funzione del materiale di partenza e della tecnologia utilizzata, come riportato da uno studio recente del dipartimento di ingegneria meccanica e strutturale dell’Università di Brescia. Esso permette di riottenere una materia prima seconda attraverso la rottura dei legami creati tra le catene polimeriche durante la fase di vulcanizzazione. Questo processo della gomma costituente gli pneumatici non è solo un potenziale metodo di riciclo degli stessi, ma rappresenta, allo stato attuale, l’approccio più promettente per risolvere le difficoltà legate al problema di impatto ambientale causato dalle enormi quantità di pneumatici a fine vita. Attraverso il processo definito devulcanizzazione la gomma viene riportata ad una struttura chimica vicina a quella dell’elastomero di partenza; questo ne permette l’aggiunta alle normali mescole. La devulcanizzazione, in genere, è effettuata in autoclave mediante processi termochimici sfruttando l’azione congiunta di temperatura, pressione ed additivi chimici. La composizione delle gomme riciclate è molto simile a quella del materiale vergine di provenienza. Sotto forma di granulato o polverino, può entrare a far parte delle mescole utilizzate dall’industria per numerose applicazioni. Il concetto di “economia circolare” assume attualmente una valenza predominante in quanto le sostanze di cui sono fatti i prodotti saranno sempre più trattate come una risorsa uguale alle materie prime e non più solamente smaltite. La prospettiva è quindi mirata alla valorizzazione delle attività finalizzate al riutilizzo degli pneumatici a fine vita (PFU). LA DEVULCANIZZAZIONE La devulcanizzazione è il processo attraverso cui si cerca di scindere i legami chimici tra gomma e zolfo, creati grazie alla vulcanizzazione, e responsabili delle proprietà elastiche e di resistenza meccanica che fanno della gomma un materiale molto apprezzato. La devulcanizzazione prevede l’utilizzo di processi chimici, termici e meccanici che risultano essere altamente inquinanti, in quanto potrebbero rilasciare gas tossici nell’ambiente; inoltre, richiedono un ingente consumo energetico. A causa dell’utilizzo di additivi chimici o di alte temperature, c’è un elevato rischio che si rompano anche le catene polimeriche che costituiscono la gomma stessa, la quale verrebbe denaturata perdendo tutte le sue caratteristiche chimiche e fisiche. In particolare, di seguito vengono elencate le diverse modalità attualmente utilizzate per tale processo: Chimica: viene aggiunto al polverino di gomma una quantità di reagenti chimici a temperature e pressioni elevate specifiche. Una volta terminato il processo, i residui vengono risciacquati, filtrati ed asciugati per eliminare le eventuali impurità chimiche indesiderate. Possono essere utilizzati diversi agenti devulcanizzanti e, a seconda della tipologia scelta e delle caratteristiche della materia prima impiegata, si otterranno delle diverse sostanze in uscita dal reattore. Ad esempio, utilizzando disolfuri nel processo si potrebbe ottenere la formazione di idrogeno solforato (H2S), metile o altri tioli (composti organici assimilabili ad alcoli in cui l'atomo di ossigeno è stato sostituito da un atomo di zolfo, aventi quindi formula generale R-SH: il gruppo funzionale SH viene denominato sia come gruppo tiolo che come gruppo solfanile). Poiché la produzione di pneumatici utilizza ossido di zinco e carbonato di zinco, la devulcanizzazione chimica potrebbe anche produrre particelle metalliche sospese nell'aria; pertanto prima del rilascio in atmosfera è necessario prevederne un trattamento specifico. Ultrasuoni: in tale metodologia i residui vengono caricati in testa ad una tramoggia e successivamente introdotti in un estrusore che tramite un’azione meccanica riscalda ed ammorbidisce la gomma. Successivamente il materiale viene sottoposto all’azione di onde ultrasoniche con un’esposizione di pochi secondi. L’attività sinergica dell’energia ultrasonica, del calore, della pressione e dell’azione meccanica contribuisce alla devulcanizzazione della gomma. La temperatura raggiunta in questo processo è di circa 110°C quindi si genererà una minore emissione di vapore e dal momento che non vengono utilizzati additivi chimici per rompere i legami dello zolfo formati nella vulcanizzazione, non si verificheranno nemmeno pericolose emissioni in atmosfera. Tuttavia, i residui gassosi verranno comunque trattati con filtri a carboni attivi. Microonde: questa metodologia utilizza l’energia controllata a microonde per devulcanizzare gli elastomeri contenenti zolfo. Il materiale da sottoporre a tale processo deve essere sufficientemente polare da poter accettare energia ad una velocità tale da poter generare il calore necessario per devulcanizzare la gomma. Biologica: vengono utilizzati determinati microorganismi per attaccare i legami di zolfo formatisi durante la vulcanizzazione della gomma naturale. Il tempo di contatto biologico necessario per tale processo è variabile tra i 10 e poche centinaia di giorni. Detti microrganismi essendo dotati di vie metaboliche desolforanti riescono ad effettuare una rottura selettiva dei ponti zolfo presenti nella gomma vulcanizzata, senza intaccare la catena polimerica. I microrganismi impiegati, infatti, sono dotati di pathway metabolici, in cui specifici enzimi intervengono in maniera selettiva a catalizzare la rottura dei legami carbonio-zolfo e zolfo-zolfo della gomma, senza intaccare i polimeri costituitivi dell’elastomero stesso, il quale quindi non viene distrutto.Categoria: notizie - tecnica - plastica - riciclo - devulcanizzazione - pneumatici Vedi i prodotti in gomma riciclati

SCOPRI DI PIU'
https://www.rmix.it/ - Emergenza Pfas nelle Materie Plastiche e negli Imballaggi: C'è una soluzione?
rMIX: Il Portale del Riciclo nell'Economia Circolare Emergenza Pfas nelle Materie Plastiche e negli Imballaggi: C'è una soluzione?
Informazioni Tecniche

Pfas nelle materie plastiche e negli imballaggi: sono composti chimici non presenti in natura, non biodegradabili e nocivi alla salute di Marco ArezioCome tutte le medaglie che si rispettano, anche i Pfas, acronimo delle sostanze perfluoroalchiliche e polifluoroalchiliche, hanno il loro lato luccicante e il loro lato oscuro. I composti chimici di queste famiglie, che se ne contano circa 4700, sono stati creati in laboratorio e largamente utilizzati dagli anni 50 nell'industria del packaging alimentare, nei pesticidi, nelle padelle antiaderenti, nei contenitori di cartone, nelle schiume antincendio, negli shampoo, nelle vernici, nei prodotti antimacchia e in molte altre applicazioni. Nelle materie plastiche li troviamo sotto forma di elastomeri (Fluoruro di vinilidene, Fluorurati in generale, Tetrafluoroetilene) o nei materiali polimerici (Sale di magnesio-sodio-fluoruro dell'acido silicico). I vantaggi di queste sostanze, applicate ai prodotti finiti, sta nella loro idrorepellenza, oleo-repellenza e termo-resistenza, che ci permettono di rendere, per esempio, una giacca impermeabile, di non far attaccare un uovo alla padella, di non sporcarci si maionese o sostanze oleose quando mangiamo un panino imbottito contenuto in un involucro di carta e di non farci sporcare le mani al cinema quando mangiamo i popcorn. Il loro legame chimico composto dal fluoro e dal carbonio rende, la molecola risultante, un elemento oggi insostituibile nelle applicazioni industriali, ma lo rende anche non biodegradabile ed estremamente pericoloso, in quanto è inodore, insapore e incolore. Queste caratteristiche gli permettono di disperdersi facilmente nelle acque, nel suolo e nell'aria, rimanendo a danneggiare l'ambiente e la salute dell'uomo per molto tempo. Le piante assorbono i Pfas attraverso l'acqua di irrigazione, li cedono ai frutti e agli animali, di cui si cibano e così, magicamente finiscono sulle nostre tavole e nel nostro corpo. Dal punto di vista della salute molti studi hanno dimostrato che l'accumulo di queste sostanze nel corpo umano possono favorire aborti spontanei, alterare la fertilità, provocare cancro al testicolo, alla tiroide e ai reni. Quali sono i mezzi oggi a disposizione per difenderci dall'inquinamento subdolo degli Pfas? Allo stato attuale non sono molti: possiamo contare sui filtri a carboni attivi in cui la porosità del carbone filtrante ha dimostrato una certa efficacia nell'intercettare i Pfas, ma non è un sistema efficace su tutte le molecole. Ma ancora una volta, la biochimica, ci potrebbe dare una risposta al problema in quanto un team di ricercatori Americani ha scoperto un batterio, chiamato Acidimicrobium A6, che avrebbe la caratteristica di spezzare il legame tra il fluoro e il carbonio nei Pfas. Il batterio è stato scoperto in una palude Americana e studiato a lungo a seguito della sua capacità di scindere l'ammonio, sfruttando il ferro presente nel terreno, senza l'impiego di ossigeno. Questa reazione denominata, Feammox, è stata riprodotta in laboratorio, dopo aver coltivato nuovi ceppi di batteri e sottoponendo le nuove famiglie ad altri tests relativi alle sostanze presenti nelle acque reflue. Dopo 100 giorni di coltura in acque contenenti, tra gli altri, anche i Pfas, si è notato che il batterio aveva la capacità di scomporre i due leganti principali, il fluoro e il carbonio, riducendoli per il 60%. La scoperta potrebbe essere interessante, non solo nei liquidi reflui contaminati da Pfas, ma anche nei terreni in quanto il batterio agisce in condizioni ipossiche, cioè di scarso ossigeno. Categoria: notizie - tecnica - pfas - packaging - imballaggi

SCOPRI DI PIU'
https://www.rmix.it/ - REACH, RoHS, TSCA, SDWTA: la Legislazione sui Prodotti Chimici
rMIX: Il Portale del Riciclo nell'Economia Circolare REACH, RoHS, TSCA, SDWTA: la Legislazione sui Prodotti Chimici
Informazioni Tecniche

REACH, RoHS, TSCA, SDWTA: la Legislazione sui Prodotti Chimicidi Marco ArezioOgni oggetto che compriamo, utilizziamo e poi, a fine vita gettiamo, è un composto di sostanze chimiche che, legate tra loro, offrono le caratteristiche estetiche, fisiche e di utilizzo che gli richiediamo.Il contenuto chimico del prodotto è la somma di una lunga catena di attività, che arriva a monte attraverso la catena di produzione. La fabbricazione di un oggetto può coinvolgere molti elementi, da poche sostanze chimiche comuni, fino a centinaia di sostanze chimiche sintetiche. Prendiamo per esempio un tipico prodotto per la pulizia della casa che può contenere una dozzina di sostanze chimiche diverse, oppure un gadget elettronico che potrebbe essere il risultato di diverse centinaia di sostanze utilizzate durante la sua fabbricazione. Alcuni composti chimici finiscono nel prodotto finale mentre altri servono come intermedi nella catena di produzione. Molto probabilmente alcune sostanze chimiche tossiche potrebbero far parte della miscela che serve per la sua produzione, infatti, le sostanze chimiche con attributi speciali vengono utilizzate per ottenere alcune proprietà del prodotto come durata, consistenza, colore o fragranze, ecc. Non è un caso che le sostanze chimiche con proprietà tossiche possano essere abbondanti tra queste sostanze chimiche speciali, ad esempio, lo sforzo di creare proprietà "durevoli" (come i tessuti idrorepellenti) tende a favorire le sostanze chimiche che sono più difficili da riconoscere e da abbattere per i sistemi biologici e viventi, infatti, possono resistere  alla dissoluzione e possono raggiungere alti livelli nocivi in natura. Quindi si può presumere che anche le sostanze tossiche possano far parte di alcuni prodotti che potremmo utilizzare. Vediamo alcune famiglie di prodotti chimici: Plastica Le materie plastiche sono un ampio gruppo di materiali a base di polimeri. I polimeri comunemente usati sono polietilene (PE), polipropilene (PP), polivinilcloruro (PVC), polistirene (PS) e poliuretano (PU o PUR). Tuttavia, l'elenco dei polimeri è molto più lungo e vengono associate costantemente nuove ricette ed additivi.Anche la miscelazione di polimeri diversi (come i materiali multistrato) è un processo normale che serve per migliorare il funzionamento delle materie plastiche. La scelta del polimero da utilizzare nella produzione dipende dalla funzione desiderata. Quasi tutti i polimeri sono prodotti dalla materia prima fossile di derivazione petrolifera. I polimeri a base biologica, come il PLA ottenuto da materie prime agricole, vengono sempre più utilizzati sebbene abbiano ancora una quota di mercato molto marginale. Alcune limitazione del loro sviluppo dipendono da un non trascurabile impatto ecologico nella loro produzione. La maggior parte dei materiali plastici contiene numerosi additivi (sostanze chimiche funzionali) per migliorare le prestazioni. La quantità di additivi applicati può variare dallo 0 al 95% a seconda del polimero e del tipo di prodotto. Molte delle proprietà negative delle plastiche derivano spesso dagli additivi piuttosto che dai polimeri stessi. Plastificanti Questi sono usati normalmente per ammorbidire la plastica, Infatti, mentre alcuni polimeri sono intrinsecamente "morbidi", altri polimeri richiedono notevoli quantità di plastificanti per diventare flessibili. Il PVC è il tipico polimero dove si fa un uso importante dei plastificanti. Gli ftalati sono un gruppo comune di plastificanti che vengono utilizzati in grandi quantità, spesso circa il 30-60% della composizione totale della plastica. Diversi ftalati hanno proprietà pericolose, come abbiamo visto in un articolo recente. Poiché gli ftalati non sono legati chimicamente al materiale plastico e possono fuoriuscire dal prodotto, è probabile che gli utilizzatori finali ne siano esposti durante il suo uso o addirittura attraverso la catena alimentare, in quanto gli ftalati possono essere assorbiti nell’ambiente. Ritardanti di fiamma I ritardanti di fiamma vengono utilizzati per rendere un prodotto meno infiammabile e, in base alle caratteristiche tecniche del prodotto da realizzare, può essere richiesto l’impegno di questi additivi. Esempi di tali utilizzi li possiamo trovare, per esempio, negli indumenti protettivi, nelle tende e nei tessuti utilizzati nei mobili, per citarne solo alcuni. Alcuni ritardanti di fiamma attualmente utilizzati, in particolare i composti alogenati, hanno dimostrato di avere proprietà pericolose, e, alcuni, sono soggetti a normative internazionali e / o nazionali. Storicamente, i ritardanti di fiamma bromurati (BFR) sono stati ampiamente utilizzati, dimostrandosi tossici in quanto avviene un bio accumulo e persistono nell'ambiente. La regolamentazione delle sostanze chimiche nei prodotti è una conquista relativamente recente, infatti non è stato sempre così. Per decenni, le sostanze chimiche sono state poco o per nulla normate, con alcune esenzioni specifiche, mentre la stragrande maggioranza delle sostanze chimiche poteva essere utilizzata senza la necessità di fornire prove della loro sicurezza. Se una sostanza era stata identificata come un inquinante tossico grave, lo si era scoperto più in seguito ad una coincidenza piuttosto che sulla base di un esame sistematico. Non era stato richiesto normalmente alcun test generale delle sostanze chimiche per le proprietà nocive. Questo è leggermente cambiato negli ultimi anni. L'UE ha applicato il REACH (registrazione, valutazione, autorizzazione e restrizione delle sostanze chimiche), un quadro giuridico completo che si occupa di tutte le sostanze chimiche in uso, richiedendo alle aziende che commercializzano sostanze chimiche di presentare una serie di dati di prova. L'equivalente statunitense, TSCA (Toxic Substances Control Act), stabilisce alcuni requisiti di base ma ha una portata molto più limitata. Cosa è il REACH Nel 2007 l'Unione Europea ha introdotto una legislazione quadro completa per le sostanze chimiche, chiamata Reach. Questo richiede che le aziende, che producono o importano sostanze chimiche, le registrino presso un'agenzia centrale (ECHA , con sede in Finlandia). Con la registrazione, le aziende devono anche riportare le proprietà di base della sostanza chimica e, se prodotta / importata in volumi maggiori, anche le informazioni che indicano se la sostanza è pericolosa. Lo scopo è rendere i produttori e gli importatori responsabili dei prodotti che mettono sul mercato e migliorare la conoscenza delle sostanze chimiche utilizzate. Il regolamento Reach contiene anche un sistema per il "solo uso autorizzato" di sostanze chimiche altamente pericolose per la salute e l'ambiente. Cosa è il TSCA Il Toxic Substances Control Act (TSCA) è un regolamento statunitense che riguarda la produzione, la lavorazione, la distribuzione, l'uso e lo smaltimento di prodotti chimici commerciali e industriali. Introdotto nel 1976, si concentra principalmente sulle nuove sostanze introdotte dopo il riconoscimento del TSCA. Cosa è il RoHS RoHS è una direttiva dell'Unione europea introdotta nel 2006 per limitare l'uso di alcune sostanze chimiche pericolose nella produzione di apparecchiature elettroniche ed elettriche. Attualmente vieta o limita dieci sostanze / gruppi di sostanze; 4 metalli pesanti, 4 ftalati e 2 gruppi di ritardanti di fiamma bromurati. Cosa è il California “Proposition 65”. Nel 1986, lo Stato della California ha introdotto il "Safe Drinking Water and Toxic Enforcement Act", ma più spesso indicato come "Proposition 65". Richiede allo Stato di pubblicare un elenco di sostanze chimiche note che possono causare il cancro o difetti alla nascita o altri danni riproduttivi. L'elenco viene aggiornato frequentemente e attualmente comprende circa 800 sostanze chimiche. La legge impone alle aziende di notificare ai californiani, quantità significative di sostanze chimiche nei prodotti che acquistano, nelle loro case o nei luoghi di lavoro o che vengono rilasciate nell'ambiente. La Proposition 65 vieta inoltre alle aziende californiane di scaricare consapevolmente quantità significative di sostanze chimiche elencate in presenza di falde d’acqua potabile.Categoria: notizie - tecnica - REACH - ROHS - SDWTA Vedi maggiori informazioni sulla chimica applicataFonti chemsec

SCOPRI DI PIU'
https://www.rmix.it/ - Casse agricole: la scelta del polipropilene o dell’hdpe riciclato
rMIX: Il Portale del Riciclo nell'Economia Circolare Casse agricole: la scelta del polipropilene o dell’hdpe riciclato
Informazioni Tecniche

Robustezza, visibilità, durabilità, sicurezza, resistenza alle temperature e riciclate, questo si chiede a una cassa agricoladi Marco ArezioIn campagna quando c’è il periodo della raccolta della frutta e della verdura, che si svolge ancora prevalentemente a mano, i contenitori dei prodotti agricoli raccolti, per essere trasportati ai reparti di lavorazione e confezionamento, devono presentare caratteristiche particolari. Le casse agricole, dette da trasporto in quanto hanno la funzione di ricevere il frutto o la verdura tolta dalla pianta o dal campo, sono elementi generalmente in plastica adatti a contenere il prodotto per essere poi trasportato nei centri di lavorazione e confezionamento. In passato tutte le casse agricole da trasporto erano prodotte utilizzando polimeri vergini, ed realizzate utilizzando colorazioni sgargianti come il giallo, il rosso, il bianco per essere facilmente notabili nel campo. Questo tipo di imballo viene anche impiegato per il contenimento e la spedizione della frutta lavorata di elevato peso, che deve anche ricevere una conservazione alle basse temperature. Oggi la cassa agricola viene generalmente prodotta in materiale riciclato, che sia in PP o in HDPE, utilizzando materiali provenienti dalla raccolta differenziata. Si è cercato di dare una normativa alla filiera del prodotto che imponesse l’uso di materiali riciclati provenienti dalle sole casse agricole, ma in effetti la tracciabilità, nelle fasi di lavorazione della plastica attraverso la raccolta, macinatura, lavaggio ed eventuale granulazione, non permette che venga escluso un possibile contatto con altre tipologie di plastiche o contaminazioni. Questo perché, pur potendo disporre di imballi provenienti dalla sola agricoltura, i processi di trasformazione e riciclo in una nuova materia prima, sottopongono l’input al passaggio in macchine di triturazione e a impianti di lavaggio ed estrusione, nel caso dei granuli, che hanno lavorato anche altre materie prime. Sulla base di queste informazioni bisogna però dire che il prodotto raccolto nel campo ha già di per sé un grado di protezione che può essere la buccia, anch’essa tra l’altro, sottoposta all’irrorazione di insetticidi ed antifungini durante la fase di crescita del prodotto, i quali hanno un impatto decisamente più importante rispetto ad un contatto tra la frutta e con un prodotto inerte come la plastica riciclata. La scelta della plastica da utilizzare dipende dal ciclo di lavoro delle derrate alimentari che verranno contenute e dal tipo di logistica che si deve impiegare. Se la cassa ha una mera funzione di mobilità del raccolto dal campo fino allo stabilimento di lavorazione, non è di grande importanza la scelta se usare una cassa in polipropilene o in polietilene ad alta densità, ma se la frutta o la verdura devono essere conservate nelle celle frigorifere, la scelta cade sull’HDPE che ha un grado di resistenza alle basse temperature più importante rispetto al polipropilene. La produzione della materia prima, di entrambe le categorie plastiche, avviene attraverso l’uso dello scarto degli imballi che il sistema della raccolta differenziata può mettere a disposizione e tramite la riconversione a nuovo di magazzini di aziende delle bibite o della logistica, che periodicamente sostituiscono il loro parco contenitori. Vediamo le differenze di produzione della materia prima: Il Polipropilene viene generalmente prodotto dai rifiuti di imballi del settore alimentare, cassette agricole e industriali che vengono selezionati per provenienza, macinati in dimensioni di circa 10-12 mm., deferrizzati, lavati in impianti a rotazione e a decantazione in vasca, densificati per lacune tipologie di imballi e, se richiesto, avviati agli estrusori per la granulazione. La fluidità del prodotto realizzato, normalmente, si aggira intorno ad un range compreso tra 6 e 12 a 230°-2,16 kg. e può essere generalmente colorato con colori scuri. La materia prima gode di una certa abbondanza nei mercati della plastica e ha generalmente un prezzo contenuto sia per quanto riguarda il macinato che il granulo. Le casse risultano robuste, in quanto normalmente la percentuale di PP all’interno della ricetta è solitamente intorno al 90%, ma sono sconsigliate per un uso nelle celle frigorifere.Il Polietilene ad alta densità non gode della stessa facilità di reperimento sul mercato in quanto l’industria del packaging, soprattutto quella delle acque minerali e delle bibite, ha da tempo puntato su imballi in film plastici, lasciando il mercato del riciclo senza prodotto. Ci sono ancora aree di produzione nel mondo in cui si preferisce la realizzazione delle casse con materiali vergini, specialmente in alcuni settori alimentari in cui esiste un contatto diretto con il cibo non protetto, e questo genera un piccolo mercato del riciclo. Altre produzioni di casse con materia prima vergine vengono eseguite in paesi in cui i sistemi di separazione dei materiali e il successivo riciclo non sono così sviluppati da creare un ciclo di approvvigionamento sufficiente per chi costruisce questi imballi. In ogni caso, la produzione di un HDPE riciclato per la produzione di casse agricole passa dalla separazione per colore delle casse disponibili, così da poter impiegare la materia prima senza aggiungere coloranti in fase di stampaggio, la macinazione e la deferrizzazione del macinato in HDPE e il successivo lavaggio con il doppio passaggio come per il polipropilene. La fluidità varia da 6 a 8 a 190°/2,16 Kg. e il macinato può essere impiegato direttamente in macchina per produrre la cassa oppure passare alla fase di granulazione.Categoria: notizie - tecnica - plastica - riciclo - PP - HDPE - casse agricole

SCOPRI DI PIU'
https://www.rmix.it/ - Cappotti Termici Anti-Fuoco per i Grattacieli: Guida alla Sicurezza e all'Innovazione
rMIX: Il Portale del Riciclo nell'Economia Circolare Cappotti Termici Anti-Fuoco per i Grattacieli: Guida alla Sicurezza e all'Innovazione
Informazioni Tecniche

Materiali Autoestinguenti (Anche Riciclati) e Tecniche Costruttive Avanzate per la Protezione Antincendio dei Grattacieli di Marco ArezioIl cappotto termico sui grattacieli non solo migliora l'efficienza energetica dell'edificio ma gioca un ruolo cruciale nella protezione contro il fuoco, mitigando l'effetto camino, in determinate condizioni applicative e qualitative degli isolanti, che può accelerare la propagazione delle fiamme. Data la crescente altezza e complessità delle strutture urbane moderne, la sicurezza antincendio è diventata una priorità assoluta. Questo articolo esplora come costruire un cappotto termico efficace e sicuro, con un focus particolare sui materiali autoestinguenti e sulle tecniche costruttive avanzate. L'Effetto Camino in Caso di Incendio nei Grattacieli L'effetto camino si verifica quando l'aria calda sale rapidamente all'interno di un edificio, creando un flusso ascendente che aspira aria fresca dalle aperture inferiori. Nei grattacieli, questo fenomeno può accelerare drammaticamente la diffusione del fuoco, spingendolo verso i piani superiori a una velocità allarmante. Materiali Isolanti e Rischio Incendio Ma i materiali isolanti esterni possono anche contribuire significativamente all'effetto camino se non sono adeguatamente selezionati e applicati. Materiali altamente infiammabili non solo alimentano il fuoco ma possono anche generare fumi tossici, mettendo a rischio la sicurezza degli occupanti. Materiali Isolanti AutoestinguentiDefinizione e Importanza dell'AutoestinguenzaUn materiale isolante è considerato autoestinguente quando è capace di fermare la propagazione delle fiamme senza l'intervento esterno. Questa caratteristica è cruciale nei grattacieli, dove l'accesso ai piani superiori per le operazioni di spegnimento potrebbe essere difficoltoso. L'autoestinguenza si misura attraverso standard specifici che valutano la capacità di un materiale di estinguersi entro un tempo definito dopo l'ignizione. Panoramica sui Materiali Isolanti Comuni e la Loro Reazione al Fuoco I materiali isolanti più comuni includono polistirene (EPS e XPS), poliuretano, lana di roccia, e fibra di vetro. Ognuno presenta caratteristiche uniche in termini di resistenza al fuoco: Polistirene (EPS e XPS): Pur offrendo buone prestazioni termiche, richiede additivi ritardanti di fiamma per migliorare la sicurezza antincendio. Poliuretano: Ha un'eccellente resistenza termica ma può degradarsi rapidamente in presenza di fuoco se non trattato adeguatamente. Lana di roccia: Naturalmente resistente al fuoco, non contribuisce alla propagazione delle fiamme ed è spesso utilizzata in applicazioni che richiedono un'alta resistenza al fuoco. Fibra di vetro: Similmente alla lana di roccia, offre buone prestazioni in termini di resistenza al fuoco. Criteri per la Scelta di un Isolante Termico Autoestinguente Quando si seleziona un isolante termico per i grattacieli, è fondamentale considerare: La classificazione di reazione al fuoco: Preferire materiali classificati come A1 o A2, secondo le norme europee, che indicano nessuna o limitata contribuzione al fuoco. Densità e spessore: Fattori che influenzano la capacità di isolamento e la resistenza al fuoco del materiale. Durabilità e stabilità chimica: La capacità del materiale di mantenere le sue proprietà nel tempo, anche in condizioni avverse. Isolanti Termici Prodotti con Materiali Riciclati Recentemente, l'attenzione si è spostata verso materiali isolanti sostenibili prodotti con materiali riciclati, che non solo offrono una buona resistenza termica ma sono anche più ecologici. Alcuni esempi includono: Isolanti a base di cellulosa: Prodotti principalmente da carta riciclata, trattati con boro per conferire proprietà ignifughe. Pannelli di lana riciclata: Utilizzano scarti di tessuto e lana per creare pannelli isolanti con buone proprietà di resistenza al fuoco. Polistirolo riciclato: Benché il polistirene sia meno desiderabile dal punto di vista della resistenza al fuoco, le versioni riciclate trattate con additivi ritardanti di fiamma possono rappresentare un'opzione economica e relativamente sicura. Migliori Isolanti Termici in Relazione al Fuoco Approfondiremo ora gli isolanti termici, concentrandoci sulla loro efficacia in relazione al fuoco, per identificare i materiali più sicuri e performanti per l'uso nei grattacieli. Analisi Comparativa dei Materiali Isolanti Per comprendere quale isolante termico offre le migliori prestazioni in caso di incendio, è fondamentale considerare diversi fattori, tra cui la resistenza al fuoco, la capacità di isolamento termico, e le emissioni in caso di combustione. Ecco una breve panoramica: Lana di roccia: Eccelle nella resistenza al fuoco grazie alla sua composizione minerale. Non brucia ed è capace di resistere a temperature superiori ai 1000°C. Offre anche un'ottima isolazione termica e acustica. Fibra di vetro: Simile alla lana di roccia per prestazioni antincendio e isolamento termico, ma può essere meno confortevole da maneggiare a causa delle fibre fini che possono irritare la pelle e le vie respiratorie. Poliuretano trattato: Con l'aggiunta di ritardanti di fiamma, il poliuretano espanso può raggiungere una buona resistenza al fuoco, ma rimane inferiore alla lana di roccia e alla fibra di vetro in termini di performance antincendio. Polistirene (EPS e XPS): Anche se trattati con ritardanti di fiamma, tendono a essere meno performanti in caso di incendio rispetto agli altri materiali menzionati. Dati Tecnici: Reazione al Fuoco, Limiti di Temperatura, Emissioni Tossiche La selezione dei materiali isolanti per i grattacieli deve tenere conto non solo della loro capacità di isolamento termico ma anche della loro reazione al fuoco. Materiali come la lana di roccia e la fibra di vetro non contribuiscono alla propagazione delle fiamme e resistono a temperature estremamente alte senza emettere sostanze tossiche. Al contrario, materiali a base di polimero, anche se trattati con ritardanti di fiamma, possono degradarsi e rilasciare gas tossici a temperature elevate. Emissioni Tossiche dei Materiali Isolanti in Combustione Descrizione dei Fumi Tossici Quando i materiali isolanti bruciano, possono rilasciare una varietà di fumi tossici e gas pericolosi. La composizione e la quantità di queste emissioni variano a seconda del tipo di materiale coinvolto nella combustione. I fumi possono includere monossido di carbonio (CO), diossine, acido cloridrico (HCl), cianuro di idrogeno (HCN), oltre a particolato fine che può trasportare sostanze tossiche più profondamente nel sistema respiratorio. Composizione dei Fumi e Materiali Responsabili Polistirene (EPS e XPS): In caso di incendio, il polistirene può rilasciare monossido di carbonio e benzene, un idrocarburo aromatico noto per le sue proprietà cancerogene. Poliuretano: La combustione del poliuretano può produrre cianuro di idrogeno, un gas estremamente velenoso, oltre a monossido di carbonio e diossido di carbonio (CO2). PVC e altri materiali plastici con cloro: La combustione di isolanti contenenti PVC può generare acido cloridrico, diossine e furani, sostanze altamente tossiche e persistenti nell'ambiente. Impatti sulla Salute Umana L'esposizione ai fumi tossici può avere gravi conseguenze per la salute, includendo: Irritazioni: Gli occhi, la pelle e le vie respiratorie possono subire irritazioni acute a causa dell'esposizione ai gas acidi come l'acido cloridrico. Avvelenamento da monossido di carbonio: Il monossido di carbonio, inalato in quantità sufficienti, può essere fatale poiché impedisce il trasporto dell'ossigeno nel sangue. Effetti a lungo termine: L'esposizione a diossine e altri composti organici persistenti può avere effetti cancerogeni o danneggiare il sistema immunitario a lungo termine. Misure di Mitigazione Per ridurre il rischio associato alle emissioni tossiche, è essenziale: Scegliere materiali con basso potenziale di emissione tossica: Preferire materiali isolanti che, in caso di incendio, rilascino meno sostanze pericolose. Sistemi di evacuazione fumi e gas: Implementare sistemi di sicurezza atti a ridurre la concentrazione di fumi tossici negli ambienti interni. Normative e test rigorosi: Assicurare che tutti i materiali isolanti siano sottoposti a test rigorosi per valutare il loro comportamento in caso di incendio e le emissioni potenzialmente tossiche. Tecniche Costruttive dei Cappotti Termici Anti-Fuoco La progettazione e l'installazione di cappotti termici anti-fuoco richiedono attenzione e precisione per garantire che l'edificio sia protetto efficacemente contro la propagazione del fuoco. Principi di Design a Prova di Fuoco I principi fondamentali nel design di cappotti termici a prova di fuoco includono: Integrità strutturale: Assicurare che i materiali isolanti siano applicati in modo da non compromettere l'integrità strutturale dell'edificio in caso di incendio. Barriere al fuoco: Installazione di barriere al fuoco in punti critici per prevenire la diffusione delle fiamme attraverso il cappotto termico. Ventilazione: Progettare sistemi di ventilazione che impediscono l'effetto camino, limitando la quantità di ossigeno disponibile per alimentare un incendio. Metodi di Applicazione e Integrazione con la Struttura Esistente L'applicazione di cappotti termici anti-fuoco richiede tecniche specifiche per garantire che siano ben integrati con la struttura esistente: Fissaggio meccanico: Utilizzo di sistemi di fissaggio che non compromettono la resistenza al fuoco dei materiali isolanti. Sigillature resistenti al fuoco: Impiego di sigillanti e schiume resistenti al fuoco per chiudere qualsiasi apertura o giunto, impedendo la penetrazione delle fiamme. Monitoraggio e manutenzione: Implementazione di un programma di monitoraggio e manutenzione per assicurare l'integrità del cappotto termico nel tempo. Propagazione del Fuoco e Dati Tecnici La comprensione dei meccanismi di propagazione del fuoco è essenziale per progettare sistemi di isolamento efficaci. Il fuoco può propagarsi in verticale attraverso l'effetto camino, ma anche in orizzontale, attraverso la conduzione termica dei materiali. La scelta dei materiali e delle tecniche costruttive deve essere guidata da dati tecnici solidi su come diversi materiali reagiscono al calore e al fuoco, nonché sulle loro proprietà di isolamento termico. Casi di Studio: Incendi Catastrofici nei Grattacieli Analizziamo più dettagliatamente alcuni dei più significativi incendi di grattacieli, esaminando le cause, le dinamiche di propagazione del fuoco, e le lezioni apprese in termini di sicurezza antincendio e scelta dei materiali. Grenfell Tower, Londra, 2017 Cosa è accaduto: Nelle prime ore del 14 giugno 2017, un incendio iniziato in un appartamento al quarto piano della Grenfell Tower si è rapidamente diffuso all'intero edificio, causando 72 vittime. Causa principale: La rapida propagazione del fuoco all'esterno dell'edificio è stata facilitata dal rivestimento in polietilene (PE) e dai pannelli isolanti in poliuretano, entrambi altamente infiammabili. Lezioni apprese: L'incidente ha sottolineato la cruciale importanza di utilizzare materiali di rivestimento e isolamento che rispettino elevati standard di resistenza al fuoco. Ha inoltre evidenziato la necessità di revisioni normative e controlli più rigorosi sulle procedure di sicurezza antincendio in edifici residenziali alti. Torre Plasco, Teheran, 2017 Cosa è accaduto: Il 19 gennaio 2017, un incendio scoppiato nei piani superiori della Torre Plasco, un edificio di 17 piani, ha portato al crollo completo della struttura, causando la morte di 22 vigili del fuoco. Causa principale: La mancanza di adeguate misure di sicurezza antincendio e la presenza di materiali infiammabili all'interno dell'edificio hanno contribuito al crollo. Lezioni apprese: Questo disastro ha evidenziato l'importanza di adeguati sistemi di prevenzione incendi e di strutture costruite per resistere a lunghi periodi di esposizione al fuoco, evitando così crolli catastrofici. Hotel Address Downtown, Dubai, 2015 Cosa è accaduto: Il 31 dicembre 2015, un incendio ha avvolto l'Hotel Address Downtown di Dubai, danneggiando gravemente l'edificio ma senza causare vittime. Causa principale: Analogamente alla Grenfell Tower, il fuoco si è diffuso rapidamente a causa del materiale utilizzato per il rivestimento esterno dell'edificio, che includeva componenti infiammabili. Lezioni apprese: L'incendio ha messo in luce la necessità di revisionare gli standard di sicurezza per i materiali di rivestimento usati negli edifici alti, spingendo Dubai a modificare le sue normative edilizie per richiedere materiali con maggiore resistenza al fuoco.Letteratura Tecnica"La sicurezza antincendio negli edifici" - Questo tipo di pubblicazione spesso esplora le normative, i materiali e le strategie di progettazione per prevenire e combattere gli incendi in strutture di varie dimensioni, inclusi potenzialmente i grattacieli. "Materiali per l'architettura sostenibile: Prestazioni, sostenibilità, riciclo" di Valentina Serra - Sebbene il focus sia sull'architettura sostenibile in generale, il libro può offrire informazioni preziose sui materiali isolanti innovativi e sostenibili, alcuni dei quali con buone proprietà di resistenza al fuoco. "Tecnologia dei sistemi edilizi: Progettazione e costruzione" - Libri con questo titolo tendono a coprire un ampio spettro di tecnologie edilizie, inclusi i sistemi di isolamento termico. Possono fornire informazioni tecniche utili sulla selezione e l'applicazione di materiali isolanti nei grattacieli. "Manuale dell'ingegnere civile e ambientale" - Sebbene non focalizzato esclusivamente sull'isolamento termico o sulla sicurezza antincendio, un manuale così completo può contenere capitoli o sezioni dedicate alla progettazione antincendio e ai materiali isolanti utilizzati in edilizia.

SCOPRI DI PIU'
https://www.rmix.it/ - POM o Poliossimetilene Riciclato: Da Dove Viene e Cosa E’
rMIX: Il Portale del Riciclo nell'Economia Circolare POM o Poliossimetilene Riciclato: Da Dove Viene e Cosa E’
Informazioni Tecniche

La resina acetalica o paraformaldeide (POM) è un polimero riciclato con ottime caratteristiche tecnichedi Marco ArezioIl POM, chiamato comunemente resina alcetalica, è un polimero semicristallino che si forma durante la omo (POM – H) o copolimerizzazione (POM – R) della formaldeide. L’omopolimero POM, (CH2O)n, è tra le materie prime più rigide, anche in assenza di elementi di rinforzo, e ha un’ottima stabilità dimensionale. Il Poliossimetilene o POM, è costituito da un ponte di metilene e un atomo di ossigeno, che attribuiscono al polimero un’alta resistenza e un costo produttivo contenuto rispetto ad altri polimeri dalle simili caratteristiche meccaniche. Le caratteristiche principali del POM sono: • Buona resistenza all’abrasione • Buona resistenza alle alte temperature (fino a 150° e costanti fino a 110°) • Elevata durezza di superficie • Basso coefficiente di attrito • Buon isolamento elettrico e dielettrico • Bassa permeabilità alle sostanze organiche, ai gas e ai vapori • Bassa resistenti agli acidi forti (PH4) • Bassa resistenza agli agenti ossidanti • Bassa resistenza ai raggi UV se non additivato • Bassa igroscopicità • Non saldabile ad alta frequenza Lavorazione del POM (Poliossimetilene) Il polimero può essere normalmente trattato con i soliti sistemi di lavorazione degli altri materiali termoplastici, tuttavia lo stampaggio a iniezione è un sistema di trasformazione del POM molto usato. Le ricette polimeriche con alto peso molecolare portano, normalmente, ad una lavorazione con sistemi di estrusione, mentre quelle leggermente reticolate sono più adatte al soffiaggio. Un’accortezza durante le fasi di stampaggio è quella di preriscaldare gli stampi ad una temperatura tra i 60 e i 130 °C, in questo caso il ritiro di lavorazione si riduce da 3 all’1% con la diminuzione della temperatura dello stampo, e il post ritiro aumenta in proporzione. Campi di applicazione del POM (Poliossimetilene) In virtù delle sue caratteristiche prestazionali in merito alla tenacità e durezza, i prodotti realizzati con il polimero POM sono adatti alla sostituzione di parti metalliche di uso tecnico, come leve, cuscinetti, viti, rotismi, bobine, raccorderie di tubi, parti di macchine utensili e componenti per pompe. Compound e blend con il POM (Poliossimetilene) Il polimero si presta a miscele tecniche che possano aumentarne la resistenza e la durabilità, infatti è possibile additivarli con fibra di vetro, sferette di vetro o cariche minerali. Inoltre è possibile creare dei blend tra il POM e il gli elastomeri PUR, queste miscele permettono di aumentare la tenacità ma, nello stesso tempo, diminuire la rigidità e la resistenza, aggiungendo normalmente circa il 50% di elastomeri PUR. E’ possibile aumentare anche il comportamento all’attrito o allo scorrimento a secco aggiungendo cariche di MoS2, PFT, PE od oli di silicone. Invece, per aumentare la stabilità al calore e la conducibilità elettrica si può aggiungere al POM la polvere di alluminio o di bronzo. Come si ricicla il POM (Poliossimetilene) Gli scarti del POM possono essere di tipo industriale o da post consumo, sono comunque entrambi validi prodotti per poter essere riciclati ed impiegati in miscele tecniche. Gli scarti di tipo industriale, che godono di una pulizia maggiore in partenza, sono generalmente preselezionati e successivamente macinati, per poi essere utilizzati in miscela con il macinato da post consumo o con il POM vergine. Questo dipende sempre dal tipo di trasformazione del polimero che si deve fare e da tipo di prodotto finale, sia per quanto riguarda le caratteristiche fisico - meccaniche che per aspetto estetico. Gli scarti da post consumo, hanno bisogno di una maggiore attenzione in fase di riciclo, infatti potrebbe essere necessario, dopo la selezione, un’attenta valutazione sull’eventuale passaggio in un mulino magnetico, per togliere eventuali parti metalliche, ed un lavaggio per separare il POM da elementi non metallici. Categoria: notizie - tecnica - plastica - riciclo - POM

SCOPRI DI PIU'
179 risultati
1 2 3 4 5 6 ... 10

CONTATTACI

Copyright © 2024 - Privacy Policy - Cookie Policy | Tailor made by plastica riciclata da post consumoeWeb

plastica riciclata da post consumo