Caricamento in corso...
24 risultati
https://www.rmix.it/ - Cosa è il Polimero PVA: Produzione, Utilizzo, Riciclo e Impatto Ambientale
rMIX: Il Portale del Riciclo nell'Economia Circolare Cosa è il Polimero PVA: Produzione, Utilizzo, Riciclo e Impatto Ambientale
Informazioni Tecniche

Il PVA è un polimero ormai onnipresente nella produzione di oggetti di uso comune e di rilevanza tecnica, ma con risvolti ambientali non semplici di Marco ArezioIl poliacetato di vinile (PVA) è un polimero sintetico con eccellenti proprietà di solubilità in acqua, rendendolo un materiale di scelta in diverse applicazioni industriali e commerciali. La sua versatilità deriva dalla sua capacità di formare film trasparenti, la sua resistenza a solventi organici e oli, nonché la sua atossicità, che lo rende sicuro per l'utilizzo in applicazioni mediche e alimentari. Produzione del PVA Processo di Produzione La produzione di PVA inizia con la polimerizzazione dell'acetato di vinile in presenza di un catalizzatore. Il processo può variare, ma comunemente include le fasi di iniziazione, propagazione e terminazione, che conducono alla formazione di catene polimeriche di PVA. Successivamente, il polimero viene purificato e trasformato in varie forme per la commercializzazione, come polvere, granuli o soluzioni acquose. Dati di Produzione Mondiale La produzione di PVA a livello mondiale è influenzata da diversi fattori, tra cui la domanda nei settori chiave come l'imballaggio, la tessile, l'edilizia e l'agricoltura. L'Asia è il maggiore produttore di PVA, in particolare la Cina, che da sola contribuisce significativamente alla capacità produttiva globale. Altri paesi asiatici come Giappone, Corea del Sud e India sono anche importanti produttori di PVA. Principali Paesi Produttori di PVACina: La Cina è il leader nella produzione di PVA, con una stima di produzione che varia notevolmente, ma che può superare il milione di tonnellate annue, a seconda della domanda interna e delle esportazioni. Giappone e Corea del Sud: Questi paesi sono noti per la loro alta qualità di PVA, con una produzione combinata che può raggiungere centinaia di migliaia di tonnellate all'anno. India: L'India sta emergendo come un importante centro di produzione di PVA, con una capacità produttiva in crescita, che mira a soddisfare sia il mercato interno che quello delle esportazioni. Trend di Crescita La tendenza di crescita nella produzione di PVA riflette l'aumento della domanda in vari settori applicativi. La produzione è prevista aumentare nei prossimi anni, con un tasso di crescita annuo composto (CAGR) che può variare in base a diversi fattori economici, tecnologici e ambientali. Applicazioni ed Utilizzi del PVAIl Polivinil Alcol (PVA) è un polimero versatile con una vasta gamma di applicazioni e utilizzi in diversi settori industriali, grazie alle sue proprietà uniche quali la solubilità in acqua, la biodegradabilità (sotto certe condizioni), la resistenza chimica e meccanica, e l'atossicità. Di seguito, approfondiamo le principali applicazioni e utilizzi del PVA. Industria Tessile Nel settore tessile, il PVA è impiegato come agente di addolcimento e di finitura per migliorare la resistenza e la flessibilità dei filati e dei tessuti. Serve anche come fibra di supporto che può essere facilmente rimossa dopo il processo di tessitura, migliorando così l'efficienza della produzione. Packaging Il PVA trova ampio impiego nell'industria del packaging, in particolare nella produzione di film solubili in acqua e di imballaggi biodegradabili, come le capsule di detersivo liquido. Questi imballaggi si dissolvono completamente a contatto con l'acqua, riducendo i rifiuti di plastica. Edilizia e Costruzioni Nell'edilizia, il PVA è usato come componente in malte, intonaci, e sigillanti per migliorarne le proprietà adesive, la flessibilità e la resistenza all'umidità. Viene inoltre utilizzato in pitture e rivestimenti per aumentarne la durata e la resistenza agli agenti chimici. Industria della Carta Il PVA migliora la resistenza meccanica e la lucidità della carta e del cartone, trovando applicazione nella produzione di carta per stampa di alta qualità e imballaggi alimentari. Agisce anche come agente legante in inchiostri e vernici, migliorando la qualità di stampa. Elettronica Nel campo dell'elettronica, il PVA è utilizzato in componenti di display a cristalli liquidi (LCD) e in altri dispositivi elettronici per le sue proprietà ottiche e isolanti. Serve come strato di allineamento per i cristalli liquidi, essenziale per la qualità dell'immagine. Settore Farmaceutico e Medico Il PVA trova impiego in applicazioni mediche e farmaceutiche, tra cui la fabbricazione di capsule e film solubili per il rilascio controllato di farmaci, nonché in materiali per lenti a contatto morbide e idrogeli per applicazioni biomediche, grazie alla sua compatibilità biologica e atossicità. Agricoltura Nell'agricoltura, il PVA è usato per produrre film agricoli biodegradabili che aiutano a conservare l'umidità del suolo e a ridurre l'uso di erbicidi. Questi film si degradano naturalmente, riducendo l'impatto ambientale dell'agricoltura intensiva. Prodotti per la Cura Personale Il PVA è impiegato nella produzione di prodotti per l'igiene personale, come gli shampoo e i bagnoschiuma in forma solida, che si dissolvono in acqua, offrendo una soluzione sostenibile e riducendo l'utilizzo di plastica. Riciclo del PVA Il riciclo del PVA presenta delle sfide a causa della sua solubilità in acqua, ma esistono metodi sia fisici che chimici per il suo trattamento. La ricerca è incentrata sul miglioramento delle tecniche di recupero e sullo sviluppo di processi biologici per degradare il PVA in maniera più efficiente e sostenibile. Tecniche di Riciclo Riciclo Meccanico: Questo metodo implica la macinazione o la triturazione del PVA usato per riutilizzarlo direttamente nella produzione di nuovi articoli. Tuttavia, la sua efficacia è limitata dalla qualità del PVA riciclato, che può essere compromessa dalla degradazione termica o meccanica. Riciclo Chimico: Questa tecnica trasforma il PVA in monomeri o in altri composti chimici attraverso processi come l'idrolisi alcalina o l'alcolisi. Questi monomeri possono essere poi reimmessi nel ciclo produttivo. Il riciclo chimico ha il vantaggio di poter recuperare il PVA da miscele e compositi, superando alcune delle limitazioni del riciclo meccanico. Riciclo Biologico: Sfrutta microrganismi capaci di degradare il PVA in composti più semplici, come acqua e anidride carbonica, o in altri intermedi utili. La ricerca in questo campo è focalizzata sull'identificazione e l'ingegnerizzazione di ceppi batterici o enzimi specifici che possano effettuare questa trasformazione in modo efficiente. Solubilità in Acqua e Biodegradabilità La solubilità in acqua del PVA è sia una benedizione che una maledizione. Da un lato, facilita la sua rimozione da tessuti o altri materiali in processi industriali; dall'altro, rende la gestione dei rifiuti più complicata, specialmente in contesti in cui il PVA entra in ambienti acquatici. La biodegradabilità del PVA varia a seconda del suo grado di idrolisi e della composizione, con alcuni gradi di PVA che si degradano più facilmente in condizioni ambientali specifiche. Impatto Ambientale L'impatto ambientale del Polivinil Alcol (PVA) nelle acque reflue merita un'analisi approfondita, considerando sia le proprietà chimiche del PVA sia le dinamiche degli impianti di trattamento delle acque. Il PVA, nonostante sia generalmente considerato meno dannoso rispetto ad altri polimeri sintetici, presenta difficoltà specifiche una volta che entra nel sistema idrico, principalmente a causa della sua solubilità in acqua e della sua biodegradabilità variabile. Solubilità in Acqua e Trattamento delle Acque Reflue Il PVA è altamente solubile in acqua, il che significa che può facilmente disperdersi negli ecosistemi acquatici attraverso le acque reflue. Questa caratteristica, se da un lato facilita l'uso di PVA in applicazioni come capsule di detersivo solubili, dall'altro lato rende la sua rimozione dagli scarichi di acque reflue più complessa rispetto ai polimeri insolubili, che possono essere filtrati o fatti sedimentare con processi fisici standard. Biodegradabilità del PVA La biodegradabilità del PVA varia in base al grado di polimerizzazione e all'idrolisi. Alcune forme di PVA sono più facilmente degradabili da microrganismi presenti negli impianti di trattamento delle acque o negli ambienti naturali. Tuttavia, il processo di biodegradazione può essere lento e incompleto, portando all'accumulo di residui di PVA nelle acque, con potenziali effetti negativi sugli organismi acquatici. Effetti sugli Ecosistemi Acquatici La presenza di PVA nelle acque reflue e nei corpi idrici può influenzare la qualità dell'acqua e la salute degli ecosistemi acquatici in vari modi: Riduzione dell'Ossigeno: La biodegradazione del PVA da parte dei microrganismi consuma ossigeno disciolto nell'acqua, potenzialmente portando a condizioni di ipossia (basso contenuto di ossigeno) che possono danneggiare la vita acquatica. Effetti sulla Flora e Fauna Acquatica: Il PVA e i prodotti intermedi della sua degradazione possono avere effetti tossici su alcuni organismi acquatici, influenzando la crescita, la riproduzione e la sopravvivenza di pesci, invertebrati e piante acquatiche. Interferenze con i Processi di Trattamento: Alte concentrazioni di PVA nelle acque reflue possono interferire con i processi di trattamento biologico, riducendone l'efficacia e aumentando i costi operativi. Strategie di Mitigazione Per ridurre l'impatto ambientale del PVA nelle acque reflue, è necessario adottare una combinazione di approcci: Miglioramento dei Processi di Trattamento: Sviluppare e implementare tecnologie avanzate di trattamento delle acque in grado di rimuovere efficacemente il PVA e altri contaminanti organici. Innovazione nel Design dei Prodotti: Progettare prodotti che contengono PVA con una maggiore biodegradabilità o che rilasciano meno PVA nelle acque reflue. Regolamentazione e Monitoraggio: Stabilire limiti rigorosi per la concentrazione di PVA negli scarichi industriali e monitorare regolarmente le acque reflue per garantire il rispetto delle normative. Il caso delle capsule in PVA di detersivo per le lavatrici L'impatto ambientale delle capsule di detersivo in PVA (polivinil alcol) si concentra principalmente sulla loro solubilità in acqua e sulla biodegradabilità, oltre alla produzione e allo smaltimento. Questi aspetti influenzano direttamente gli ecosistemi acquatici e terrestri, la gestione dei rifiuti, e il consumo di risorse naturali. Impatto Ambientale delle Capsule di Detersivo in PVA Biodegradabilità: Sebbene il PVA sia tecnicamente biodegradabile, la velocità e l'efficienza di questo processo possono variare notevolmente a seconda delle condizioni ambientali, come la presenza di microrganismi specifici e la temperatura. Se non gestite correttamente, le capsule possono contribuire all'inquinamento da microplastiche negli ecosistemi acquatici. Solubilità in Acqua: La caratteristica principale del PVA è la sua solubilità in acqua, che permette alle capsule di detersivo di dissolversi completamente durante il ciclo di lavaggio. Tuttavia, ciò significa anche che residui di PVA possono finire nelle acque reflue, dove la loro completa biodegradazione non è sempre garantita, potenzialmente influenzando la qualità dell'acqua e la vita acquatica. Consumo di Risorse: La produzione di capsule in PVA richiede risorse naturali, inclusi petrolio e gas per la produzione del monomero di vinil acetato, e energia per i processi di polimerizzazione e confezionamento. Questo contribuisce all'impronta di carbonio del prodotto. Gestione dei Rifiuti: Anche se le capsule stesse si dissolvono, il packaging secondario può generare rifiuti aggiuntivi, specialmente se non è riciclabile o biodegradabile. Conclusioni Il PVA gioca un ruolo cruciale in molteplici industrie grazie alle sue proprietà uniche. Tuttavia, è fondamentale affrontare i problemi associati alla sua produzione, utilizzo e smaltimento per mitigare l'impatto ambientale. La promozione del riciclo e lo sviluppo di alternative sostenibili saranno vitali per garantire che l'uso del PVA rimanga sostenibile a lungo termine.

SCOPRI DI PIU'
https://www.rmix.it/ - EPS (Polistirolo Espanso) Riciclato: Da Dove Viene e Cosa E’
rMIX: Il Portale del Riciclo nell'Economia Circolare EPS (Polistirolo Espanso) Riciclato: Da Dove Viene e Cosa E’
Informazioni Tecniche

Come riciclare un materiale dai molteplici impieghi proveniente dai settori del packaging, edilizia e fooddi Marco ArezioL’EPS o più comunemente chiamato polistirolo espanso, è ottenuto dal polistirene per mezzo di un processo di polimerizzazione che si realizza attraverso una reazione chimica dello stirene. In fase di polimerizzazione, al polistirene vengono aggiunti degli additivi espandenti come il pentano, favorendo la nascita dell’EPS, che si presenta in piccole palline dall’aspetto vetroso e di granulometria differente. Portando poi le palline ad una temperatura di circa 90 °C attraverso l’uso del vapore, il gas in esse contenuto, innesca la loro espansione volumetrica pari a 20 - 50 volte il volume delle stesse. Terminata la fase espansiva si passa alla sinterizzazione delle palline, che consiste, sempre attraverso l’impiego di vapore a 110 - 120 °C, nella capacità di agglomerarsi tra loro, con la possibilità di creare blocchi monolitici. L’EPS così prodotto viene impiegato in molteplici settori, quali quelli degli isolanti in edilizia, per la protezione degli oggetti durante le fasi di imballo, e nel settore alimentare per la produzione di contenitori di varie tipologie. Questo larghissimo impiego multisettoriale, porta alla creazione di una grande quantità di rifiuti che devono essere correttamente gestiti, avviandoli al riciclo, in quanto l’EPS può essere un prodotto circolare.Come si ricicla l’EPS con il sistema meccanico La prima criticità che si incontra parlando di riciclo dell’EPS è il suo volume in rapporto con il suo peso, due elementi che determinano costi per il deposito degli scarti e per il loro trasporto. Infatti è un materiale molto leggero, circa 15-25 Kg. /m3 e molto voluminoso. Per questi motivi la prima fase del riciclo dell’EPS risiede nella sua riduzione volumetrica, attraverso la frantumazione degli scarti per via meccanica, in modo da ricavare pezzi irregolari con dimensioni da 2 a 10 cm. Terminata la fase della frantumazione si passa a quella della macinazione, che consiste nell’impiegare mulini a martelli o mulini a coltelli con alberi controrotanti, che hanno la capacità di ridurre l’EPS alle dimensioni desiderate. In alternativa alla macinazione, gli scarti di EPS frantumati possono essere compattati con presse specifiche, così da ridurne in modo monolitico il volume, portando il peso specifico tra i 300 e gli 800 Kg/m3. Se si opta per la macinazione degli scarti si ottiene una materia prima che può essere utilizzata per le fasi di estrusione, creando poi un polimero cristallo granulare con una fluidità alta, intorno a 14-18, utilizzabile per lo stampaggio ad iniezione. Per estrudere l’EPS è necessario dotarsi di un impianto di alimentazione forzata in quanto il materiale è molto leggero, inoltre è consigliabile dotarsi di un impianto di degasaggio per togliere i gas presenti all’interno della struttura cellulare. Se gli scarti macinati o compattati provengono dalla raccolta differenziata, quindi post consumo, sul nastro trasportatore è consigliabile inserire un magnete che possa intercettare eventuali elementi metallici presenti nel macinato. Inoltre è sempre opportuno setacciare il macinato in modo da eliminare eventuali impurità costituite da legno, carta, elementi non ferrosi che non vengono intercettati dai magneti. Ci sono altri sistemi di riciclo non meccanici per l’EPS che possono essere elencati qui di seguito: • Sistema del cracking molecolare per via termomeccanica • Sistema a microonde e infrarossi che genera un processo pirolitico controllato • Sistema di dissoluzione liquida che permette il recupero dell’EPS non contaminato

SCOPRI DI PIU'
https://www.rmix.it/ - Cartone Ondulato da Imballo: Dimensioni e Direzione delle Fibre
rMIX: Il Portale del Riciclo nell'Economia Circolare Cartone Ondulato da Imballo: Dimensioni e Direzione delle Fibre
Informazioni Tecniche

La qualità e la resistenza di un cartone ondulato da imballo passa dalla corretta disposizione delle fibre e dalla loro dimensionedi Marco ArezioQuante volte ci sono arrivati, recapitati a casa, i prodotti che abbiamo comprato su internet racchiusi in una scatola di cartone, quante volte nella nostra azienda utilizziamo le scatole, più o meno grandi, per imballare i nostri prodotti da vendere, quante volte facciamo ordine mettendo nelle scatole di cartone le nostre cose. Un tipo di imballo comodo, semplice da usare, duraturo nel tempo ed anche circolare, in quanto facilmente maneggiamo scatole in cartone ondulato fatte con carta prevalentemente riciclate e riciclabili. In un ambito più professionale, quindi in azienda, la qualità degli imballi, qualsiasi essi siano, ricopre un’importanza sostanziale, non solo per presentare i nostri prodotti ai clienti, ma per proteggerli durante il trasporto e lo stoccaggio in magazzino. Come viene prodotto il cartone ondulato riciclato? Per realizzare il prodotto finito partiamo dalla sua origine, quindi vediamo come di realizzano i fogli che costituiranno il cartone ondulato riciclato, facendo un passo indietro fino in cartiera. Infatti è li dove viene la storia ha inizio, utilizzando, come materia prima, il cartone che deriva dalla raccolta differenziata, che compone la parte preminente della ricetta, aggiungendo poi di una piccola parte di fibre di carta vergine, per aumentare la qualità del prodotto finito. La tipologia di ricetta descritta non esaurisce le possibilità di trovare altre miscele, in quanto un cartone ondulato può essere anche prodotto al 100% con il materiale da riciclo o con percentuali di esso più basse. Una volta inserita la materia prima nell’impianto di lavorazione, viene aggiunta acqua e altre sostanze adatte al trattamento, iniziando così un mescolamento della materia prima che porta alla creazione di una pasta fluida, in cui troviamo un elemento di cruciale importanza per la qualità del futuro prodotto finito che sono le fibre. Infatti, sia il cartone da riciclo che la materia prima naturale, che viene dagli alberi, ne contengono di diverse tipologie e costituiscono l’asse portante delle future scatole in cartone ondulato. Una volta realizzata la pasta di carta la si stende, in strati sottili, variabili in base alle richieste commerciali, su piani di lavoro per poi essere inviati all’essicazione dei fogli. Raggiunta l’essicazione corretta i fogli piani vengono interposti ad uno ondulato, realizzato appositamente attraverso l’utilizzo di un’azione meccanica di piegatura coadiuvata dal vapore. I vari strati verranno poi incollati tra loro utilizzando delle colle vegetali derivate dalla fecola di patate o dall’amido di mais. Come si forma la direzione delle fibre e perché è così importante Durante la creazione della pasta, attraverso il movimento della macchina e la presenza dell’acqua, si gioca la partita più importante in merito alla qualità futura del cartone, infatti, con questa operazione si viene a formare la direzione delle fibre che, insieme alla loro lunghezza, determineranno il risultato qualitativo del prodotto. Le fibre sono, come detto, un’armatura per il foglio di carta o di cartone, lo strumento portante del prodotto e, la loro disposizione ne determina la resistenza meccanica monodirezionale o bidirezionale. Infatti se le fibre sono orientare in modo parallele è possibile lacerare il foglio nel senso della direzione delle stesse, ma risulta difficoltoso ed irregolare nel senso opposto. Inoltre, se le fibre non hanno un andamento parallelo ma difformemente distribuito, la resistenza meccanica si ottiene nei due sensi di strappo. Questo non vale solo per la divisione dei due lembi del cartone o della carta, ma anche sulla sua facoltà nell’essere piegato, infatti se non consideriamo la disposizione delle fibre, durante la piegatura di un’ala della scatola, ad esempio, questa risulterà imperfetta e difficoltosa, sia manualmente che attraverso le imballatrici. Quale sono le differenze tra l’uso di fibre lunghe e fibre corte Non tutte le fibre sono uguali: ci sono quelle più sottili, più lunghe più irregolari, molto porose, per nulla porose, con nodi, di forma appuntita o cilindrica e molte altre. Per semplificare, in merito a quale fibra sarebbe meglio utilizzare per produrre una scatola in cartone ondulato, possiamo dire che le fibre lunghe sono quelle più adatte allo scopo, in quanto possiedono una maggiore resistenza e durezza, dovendo realizzare un piano il più possibile rigido. Per completezza possiamo indicare le fibre corte sono un’ottima soluzione per creare carte morbide e cedevoli, che vengono usate per molteplici usi. Utilizzo della carta riciclata per produrre il cartone riciclato Come abbiamo visto, una buona qualità di carta per la realizzazione delle scatole per il packaging, deve impiegare una pasta che contenga una sufficiente quantità di fibre lunghe per armare la struttura. Per poter arrivare alla corretta ricetta, per contenere i costi e per contribuire all’impiego dei rifiuti di carta e cartone che quotidianamente produciamo, la produzione utilizza una buona parte di cartone riciclato. Le operazioni di riciclo comportano, nel tempo, un certo dilavamento delle fibre, con la conseguenza che il loro apporto nella ricetta per la produzione del cartone da imballo, con i vari cicli di trattamento, potrebbe diminuire. In questo caso diventa necessario ricorrere all’aggiunta di fibre vergini per poter bilanciare la diminuzione causata dal riciclo. Categoria: Informazioni tecniche - packaging- cartone - carta - riciclo

SCOPRI DI PIU'
https://www.rmix.it/ - Rivestimenti Nano Polimerici con Proprietà Antimicrobiche. A che Punto Siamo?
rMIX: Il Portale del Riciclo nell'Economia Circolare Rivestimenti Nano Polimerici con Proprietà Antimicrobiche. A che Punto Siamo?
Informazioni Tecniche

Polimeri contenenti nanoparticelle con la capacità di inibire la proliferazione di molti microrganismi, nel settore del packaging, trasporto ed ospedaliero di Marco ArezioI microorganismi che ci circondano e che possono causare fastidi, malattie e persino la morte in alcuni casi, sono invisibili all’occhio dell’uomo ma, non solo ci fanno compagnia in ogni posto in cui stiamo, ma spesso siamo noi stessi che li trasportiamo da una parte all’altra, durante la nostra vita quotidiana.La ricerca scientifica da anni sta studiando il fenomeno, non è tanto concentrata sull’intervento diretto alla disinfezione delle superfici che tocchiamo, ma quanto ad evitare il meccanismo di prolificazione dei microrganismi sulle superfici. Per superfici intendiamo tutti quegli oggetti che, in maniera diretta od indiretta, possono essere vettori di contatto con il nostro corpo e, di conseguenza, potrebbero fare insorgere delle malattie di rapida diffusione. Questo vale per il mondo del packaging, per quello ospedaliero, per mezzi di trasporto, nelle nostre case, per i luoghi di aggregazione sociale, insomma, in tutte quelle situazioni in cui i microorganismi hanno facile vita nel replicarsi. Dal punto di vista tecnico questo fenomeno può essere compreso in quello che si definisce biofouling, cioè processi di contaminazione biologica depositati sulla superficie dei materiali. Questo processo inizia con la formazione di un film primario sulla superficie del materiale in presenza di almeno due variabili, microrganismi e umidità. Tra i microrganismi predominanti ci sono batteri e diatomee, che producono una grande quantità di materia organica, ad esempio acidi polisaccaridi che formano una pellicola in superficie con molti nutrienti, che viene utilizzata per la colonizzazione di altri organismi più grandi. Per esempio, in campo sanitario, si è scoperto che si possono formare micro-pellicole, composte da microrganismi, in dispositivi medici come cateteri vascolari, protesi articolari e cateteri urinari, che risultavo, a volte, resistenti agli antibiotici. Altri ambiti sotto osservazione sono per esempio i mezzi di trasporto o gli ambiti ospedalieri, la cui lotta contro i microrganismi infettivi viene combattuta con nanoparticelle metalliche disponibili in molti tipi e quantità. In questo modo, le nanoparticelle Cu, ZnO, Se, ZrO 2, SiO, TiO 2, tra le altre, possono essere utilizzate in tutti i luoghi sociali e nostre case in presenza di elevata umidità. Il vettore per le nanoparticelle può essere un polimero, di qualsiasi tipologia, che costituisce i prodotti, per esempio, le nanoparticelle d’argento o di rame, sono materiali interessanti che possono essere utilizzati per combattere il biofouling, poiché hanno proprietà antimicrobiche ad ampio spettro e sono efficaci contro molteplici batteri, virus e funghi. Inoltre, le nanoparticelle di ossido di ferro, hanno anche caratteristiche antimicrobiche, ma il loro studio è stato meno ampio rispetto alle nanoparticelle Ag e Cu, ma è importante notare che la loro biocompatibilità è un motivo importante per implementarne l'uso nei prodotti commerciali come quelli per il packaging. Categoria: notizie - tecnica - plastica - nanopolimeri - antimicrobici

SCOPRI DI PIU'
https://www.rmix.it/ - L’Uso delle Cariche Minerali nella Produzione di Flaconi in HDPE Riciclato
rMIX: Il Portale del Riciclo nell'Economia Circolare L’Uso delle Cariche Minerali nella Produzione di Flaconi in HDPE Riciclato
Informazioni Tecniche

Vantaggi e svantaggi nel soffiaggio dei flaconi con il granulo riciclato in HDPE caricato Talco o Carbonato di Calcio di Marco ArezioLa produzione di flaconi, monostrato in HDPE, è sempre stata di competenza del polimero vergine fino a qualche anno fa, con il quale si realizzavano colori, spessori, finiture, profumazioni e forme senza preoccuparsi troppo del rapporto polimero-soffiatrice. L’avvento dell’HDPE riciclato nel mondo del soffiaggio è stato graduale e abbastanza complicato, in quanto vigeva una certa diffidenza sull’impiego dell’rHDPE, motivata da ipotetici dubbi sulle resistenze meccaniche, sulla qualità delle superfici, sulla tenuta del manico, sull’odore dell’imballo soffiato, sulla realizzazione dei colori e della trasparenza per vedere i liquidi all’interno, sulla tenuta delle saldature, sulle micro forature delle superfici, sulla reperibilità del materiale e sulla differenza esigua del prezzo rispetto alla materia prima vergine. Tutte obbiezioni lecite per chi era abituato ad usare il polimero vergine, ma molte di esse erano preconcetti generali sul materiale riciclato, che era ancora visto come sinonimo di minor qualità generale. Non c’è dubbio che i primi anni in cui è arrivato sul mercato l’HDPE riciclato in granuli per soffiaggio, la qualità degli impianti di riciclo e selezione attribuivano alla materia prima alcuni limiti oggettivi. Le maggiori criticità erano legate ad alcuni fattori tecnici: • Impurità contenute nel granulo • Presenza eccessiva di PP • Presenza di umidità residua • Odore persistente • Colore difficilmente gestibile Non ci addentriamo su come il settore del riciclo ha tecnicamente, negli anni, risolto le problematiche esposte, riuscendo a creare un granulo in HDPE riciclato che è paragonabile, dal punto delle prestazioni generali, molte volte a quello vergine. Forse, in alcuni casi e con alcune macchine, la questione dello spessore del flacone, è ancora un argomento aperto, in quanto, a volte, può essere necessario un incremento dello spessore utilizzando l’rHDPE rispetto a quello di prima scelta. Il motivo per cui a volte può essere necessario, dipende da molti fattori, come la conformazione e la dimensione del flacone, la macchina per il soffiaggio che si usa, la qualità del granulo riciclato, elementi tutti necessari per raggiungere un corretto rapporto, tra la resistenza a compressione del flacone e il peso che grava su di esso una volta inserito in un bancale verticale. E’ possibile ovviare a questo inconveniente, dopo aver verificato e risolto le problematiche precedenti, attraverso l’uso di cariche minerali come il talco o il carbonato di calcio. La funzione delle cariche minerali è quella di aumentare la resistenza a compressione verticale del flacone, senza dover aumentare il suo spessore, attraverso l’uso di percentuali che non superano solitamente il 10-15%, in funzione della dimensione del prodotto da realizzare. Si noti, impegnando granuli caricati, che il flacone gode di vantaggi relativi alla resistenza al carico e alla torsione, migliorando quindi la trasportabilità e l’economicità in fase produttiva. Esistono però, a dire il vero, alcune informazioni da tenere ben presente quando si decide di operare attraverso il soffiaggio con un granulo in rHDPE caricato con talco o caco3: • Le viti della soffiatrice devono essere pulite spesso, in quanto le prime fasi dell’utilizzo di una miscela abrasiva, come l’HDPE caricato, facilita il trasporto di contaminazioni presenti nella macchina di soffiaggio con la possibilità di creare buchi nel flacone. • La presenza di cariche minerali può influire sulla trasparenza, o semi trasparenza, del prodotto. • La creazione di colori deve tenere conto di un possibile risultato cromatico differente rispetto ad un rHDPE senza cariche. • La presenza di PP, anche in percentuale basse, in un granulo caricato, riduce ulteriormente la capacità di saldatura e di tenuta del flacone, specialmente nei manici o in punti con angoli particolari. Categoria: notizie - tecnica - plastica - riciclo - cariche minerali - flaconi - soffiaggio - HDPE

SCOPRI DI PIU'
https://www.rmix.it/ - Qualità Chimico-Fisiche del Vetro. Confronto con Carta, Plastica e Alluminio
rMIX: Il Portale del Riciclo nell'Economia Circolare Qualità Chimico-Fisiche del Vetro. Confronto con Carta, Plastica e Alluminio
Informazioni Tecniche

I materiali per gli imballi alimentari in commercio hanno caratteristiche, qualità, costi di smaltimento e riciclabilità differentidi Marco ArezioNel mondo del packaging alimentare troviamo materie prime estremamente differenti tra loro, alcune di esse, come la carta e il vetro, hanno una storia millenaria, mentre la plastica e l’alluminio hanno una storia più recente. Non vogliamo entrare volutamente in un duello di marketing sulla preferenza tra un materiale o l’altro, ma vorremmo analizzare alcuni aspetti che riguardano la conservazione dei beni contenuti, la durabilità dell’imballo, la riciclabilità. In verità a queste analisi dovremmo aggiungere quella relativa ai costi di produzione comparati e all’impatto ambientale sulla logistica, che verranno affrontati in altra sede. Se diamo uno sguardo al passato possiamo dire che il vetro è stato il materiale principe del packaging con cui si contenevano gli alimenti liquidi, latte, vino, liquori, olio e altri generi alimentari, mentre a partire dal boom economico degli anni 60 del secolo scorso, anche l’acqua minerale e le bibite avevano trovato una loro quota di mercato attraverso la confezione nelle bottiglie. Per quanto riguarda le scatole alimentari in metallo possiamo riferirci al XIX° secolo come inizio in America e in Inghilterra delle prime produzioni industriali, nonostante i costi per realizzarle risultassero molto elevati e il cibo in scatola era quindi un lusso per pochi. A spingere la loro diffusione arrivarono però le guerre mondiali, in quanto gli eserciti trovarono comodo e logisticamente utile affidare il rancio dei soldati a questa tipologia di imballo. Con l’avvento delle lattine di alluminio iniziò una larga diffusione a partire dalla metà degli anni ’50 del secolo scorso, del cibo e delle bevande confezionate nel metallo morbido. Per quanto concerne l’uso degli imballi in carta, dobbiamo arrivare alla metà degli anni ’50 del secolo scorso per vedere l’avvio, in Svezia, dei primi imballi per liquidi alimentari in confezioni di cartone e film plastici. A partire dal 1973, quando l’azienda Du Pont brevetta il PET possiamo dire che sono nati gli imballi alimentari su larga scala, con l’intento di erodere quote di mercato a quelli di vetro. Se vogliamo fare un paragone delle qualità fisico chimiche dei principali imballi alimentari possiamo elencare alcune comparazioni generali: Cessioni possibili di sostanze costituenti l’imballo • Vetro: sodio e calcio già presenti negli alimenti • Plastica: componenti degli additivi specialmente se presenti grasso o alcool • Carta o Cartone: additivi e coloranti • Metallo: Stagno e piombo entro i limiti di legge. Sostanze tossiche dalle vernici (ad alta temperatura) Impermeabilità ai liquidi, gas ed agenti microbiologici • Vetro: 100% • Plastica: variabile a seconda del polimero • Carta o Cartone: solo se assenti abrasioni superficiali • Matallo: solo se assenti abrasioni superficiali Corrosione dell’imballo • Vetro: Solo acido fluoridrico e soluzioni alcaline a Ph superiore a 8 • Plastica: può rilasciare microplastiche in corrispondenza delle piegature • Carta o Cartone: attaccabile da insetti e topi • Metallo: generata da eventuali imperfezioni della struttura Sterilizzabilità • Vetro: 100% a secco ed a umido • Plastica: con particolari additivi batteriostatici • Carta o Cartone: in fase di confezionamento con acqua ossigenata o UV o agenti chimici • Metallo: 100% anche ad alte temperature Trasparenza • Vetro: perfetta con vetro chiaro • Plastica: dipende dal polimero, difficile con polimeri riciclati in HDPE • Carta e Cartone: no • Metallo: no Protezione alla luce Attinica • Vetro: buona nei verti colorati • Plastica: buona con additivi specifici • Carta o Cartone: opaco • Metallo: opaco Sanificazione • Vetro: ottima • Plastica: monouso da riciclare • Carta o Cartone: monouso da riciclare • Metallo: monouso da riciclare Riciclabilità • Vetro: continua e senza degrado. Economica solo con il vuoto a rendere • Plastica: possibile un certo numero di volte con qualche degrado qualitativo. Difficile il riciclo dei poliaccoppiati • Carta e Cartone: riciclabile con degrado. Difficile il riciclo dei poliaccoppiati carta-plastica • Metallo: buono In conclusione, a questa analisi andrà aggiunta una comparazione economica dell’imballo alimentare in funzione della durabilità del prodotto sugli scaffali e il costo del riciclo o dello smaltimento dell’imballo a fine vita, nonché dell’impatto ambientale sia della produzione, che della logistica che della circolarità o meno del rifiuto.Categoria: notizie - tecnica - vetro - riciclo - qualità - rottame

SCOPRI DI PIU'
https://www.rmix.it/ - Pellicole in PVC per Alimenti: Quali Contaminazioni Possibili?
rMIX: Il Portale del Riciclo nell'Economia Circolare Pellicole in PVC per Alimenti: Quali Contaminazioni Possibili?
Informazioni Tecniche

Da molti anni gli alimenti possono essere porzionati attraverso un imballo costituito da una pellicola in PVCdi Marco ArezioE’ ormai nostra abitudine acquistare porzioni di cibo che il negoziante o la grande distribuzione confeziona attraverso una pellicola in PVC. Anche nelle nostre case, lotti parziali di cibo, vengono comunemente avvolti in queste pellicole per aumentare la durata della conservazione e salvaguardarne la qualità.Sebbene oggi esistano anche diverse pellicole per alimenti in PE, il mercato del PVC è ancora quello più importante per via di numerosi fattori tecno-economici. L’uso del polimero di PVC permette di realizzare una pellicola molto resistente, con una bassa permeabilità all’acqua e all’ossigeno, con una buona resistenza agli acidi e agli alcali diluiti. Inoltre, per un fatto del tutto pratico, le pellicole alimentari in PVC hanno una ottima capacità di confezionamento, saldandosi facilmente ad un piatto o ad una ciotola o su se stesso. Dal punto di vista economico, la presenza del cloro nel composto in PVC, fondamentale per la sua struttura chimica, riduce in modo sensibile il costo del prodotto finito, questo perché si configura un risparmio di etilene pari a circa il 50% rispetto all’uso del PE a parità di prodotto. Utilizzando il PVC è possibile inserire una serie di additivi che ne possono modificare le caratteristiche prestazionali, avendo la possibilità di creare, con un unico polimero, prodotti differenti. Vediamo gli additivi principali che vengono usati nell’industria del packaging: Agenti anti blocking: riducono la tendenza all’adesività • Agenti anti appannamento: promuovono la formazione di un velo di liquido omogeneo e continuo • Antimicrobici: prevengono la crescita di microrganismi • Antiossidanti: Prevengono la degradazione del film dovuta all’atmosfera • Antistatici: Riducono l’accumulo di cariche elettriche che attraggono la polvere • Agenti rigonfianti: vengono impiegati per produrre schiume da materie plastiche • Catalizzatori: fanno iniziare la polimerizzazione nella produzione di resine plastiche • Coloranti: permettono la colorazione delle pellicole • Agenti accoppianti: favoriscono l’accoppiamento tra i pigmenti e i polimeri • Ritardanti di fiamma: riducono l’infiammabilità dei materiali che sono combustibili • Stabilizzatori di calore: riducono la degradazione del PVC in acido cloridrico • Lubrificanti: Riducono adesività tra il PVC e le parti metalliche • Plastificanti: migliorano la flessibilità, la lavorabilità e la dilatabilità Tutti questi additivi, ma specialmente i plastificanti, sono soggetti ad una strettissima normativa per permetterne l’uso in ambito alimentare. C’è da considerare che in commercio esistono circa 300 tipologie di plastificanti e quelli approvati per l’uso alimentare, sono soggetti alla normativa di disciplina igienica degli imballaggi, recipienti, utensili destinati a venire in contatto con le sostanze alimentari o con sostanze d’uso personale. Le sostanze che potrebbero trasferirsi dall’imballo all’alimento possiamo dividerle in tre categorie: Sostanze aggiunte: sono principalmente rappresentate dagli additivi del PVC sopra elencati • Residui: rappresentano parti di materiale polimerico con incomplete reazioni (monomeri, catalizzatori, solventi, adesivi ecc.) • Prodotti di neo formazione: sono sostanze che si originano dalla decomposizione spontanea dei materiali o durante le operazioni di trasformazione in manufatto Queste sostanze definite di neoformazione, sono molto variabili tra loro, in funzione di molti fattori chimico-fisici che si possono presentare e che possono influire sull’eventuale trasferimento di sostanze all’alimento di difficile gestione e risoluzione.Categoria: notizie - tecnica - plastica - pellicole alimenti - PVC - packaging

SCOPRI DI PIU'
https://www.rmix.it/ - Come Individuare il Limonene nelle Plastiche da Post Consumo
rMIX: Il Portale del Riciclo nell'Economia Circolare Come Individuare il Limonene nelle Plastiche da Post Consumo
Informazioni Tecniche

La presenza dell’odore di limonene nei rifiuti plastici da post consumo ne limita l’uso e la qualitàCon l’incremento dell’uso delle plastiche da post consumo nella produzione di articoli, si è accentuato anche il problema dell’identificazione degli odori nei rifiuti da lavorare e, di conseguenza, nei granuli prodotti a seguito del riciclo. Se fino a pochi anni fa l’odore pungente e persistente nei prodotti realizzati con i polimeri da post consumo era relativamente tollerato, in quanto destinati ad oggetti con destinazioni limitate, oggi, l’uso massiccio di questi polimeri in sostituzione della materia prima vergine o da scarti post industriali, pone il problema dell’odore del prodotto finito. Come abbiamo già avuto modo di descrivere in diversi articoli presenti nel blog, sulla difficoltà di utilizzare i polimeri in plastica riciclata da post consumo, in presenza di odori fastidiosi, possiamo approfondire l’argomento parlando di come è possibile controllare la filiera della plastica per capire, sia la presenza che l’intensità dei composti chimici che danno origine agli odori sgradevoli. L’analisi può essere fatta sia dal punto di vista del cliente che acquista il polimero da post consumo per produrre gli oggetti che andrà a vendere, sia da quello del riciclatore che dovrà analizzare, quali partite di rifiuti e in che quantità, contengano le sostanze che danno origine agli odori. Prima di tutto possiamo dire che nel rifiuto plastico da post consumo sono presenti più di una sostanza chimica che da origine ad una serie di odori, ma che alcuni sono più pungenti e fastidiosi di altri. In particolare il limonene è largamente presente ed è di difficile eliminazione, nonostante il rifiuto plastico venga debitamente trattato con corretti impianti di lavaggio e adeguate procedure di riciclo. Infatti in fase di ricezione degli imballi di scarto, che sono venuti a contatto durante la loro vita di rifiuto con molti altri prodotti, nonché quelli alimentari, è importante avere la capacità di testare i flussi in entrata per capire l’incidenza delle sostanze che creeranno odore alla fine del processo di riciclo, in modo da poterle gestire con accurate miscelazioni di rifiuti che abbiano un basso tenere di queste sostanze odorose. Questi compounds si possono realizzare sulla base di dati analitici, non a sensazione, così da creare un flusso di materia prima che possa garantire, all’utilizzatore, una certezza della percentuale di odore contenuto nel granulo. Per quanto riguarda le aziende che utilizzano il polimero plastico da post consumo, è fondamentale stabilire il target di odore accettabile, con calcoli analitici, in modo da garantire ai propri clienti finali di acquistare un prodotto, realizzato con plastiche riciclare da post consumo, con un tasso di odore secondo parametri stabiliti, non in maniera empirica attraverso l’uso di testers che mettono a disposizione il proprio naso. Questo percorso di garanzia, a valle e a monte del processo, è possibile realizzarlo utilizzando una macchina da laboratorio che utilizza la gascromatografia a mobilità ionica, che permette di fare analisi rapide (15 minuti) e automatiche dei campioni di rifiuti o di granuli plastici o sui prodotti finiti. Un semplice inserimento del campione nelle provette e delle stesse nella macchina, permette un’analisi dettagliata della presenza dei composti chimici nel campione. In base al quadro grafico che la macchina restituisce si possono identificare con certezza la presenza e l’intensità dei componenti odorosi, prendendo le dovute azioni per modificare o accettare o rifiutare il prodotto. Categoria: notizie - tecnica - plastica - riciclo - odori - limonene - post consumo

SCOPRI DI PIU'
https://www.rmix.it/ - Plastica Riciclata: Come Impiegare la Gas Cromatografia a Mobilità Ionica
rMIX: Il Portale del Riciclo nell'Economia Circolare Plastica Riciclata: Come Impiegare la Gas Cromatografia a Mobilità Ionica
Informazioni Tecniche

Plastica Riciclata: Come Impiegare la Gas Cromatografia a Mobilità Ionica per la ricerca analitica degli odoridi Marco ArezioCome abbiamo ampiamente descritto in altri articoli, i cui links li troverete nella parte finale di questo intervento, il mondo delle plastiche riciclate o da riciclare, specialmente quelle che provengono dalla raccolta differenziata, definite da post consumo, hanno il problema di gestire la componente odorosa che si instaura all’interno della materia prima riciclata. Odori che provengono dalla composizione eterogenea della plastica nella fase di raccolta, dai processi di fermentazione dei residui organici incorporati nelle plastiche da riciclare, dalle acque di lavaggio non gestite in maniera corretta, dalla degradazione in fase di estrusione dei granuli, di plastiche mischiate a quelle principali e di sostanze chimiche assorbite dai contenitori durante la loro funzione di imballo, come i tensioattivi per esempio. La produzione di granuli riciclati fatta senza il controllo chimico della materia in ingresso, del controllo delle acque e dei materiali estrusi per la vendita, è come guidare nella notte a fari spenti. L’impegno delle risorse aziendali per acquistare la materia prima da riciclare, i costi di trasformazione, i costi logistici e quelli di vendita, potrebbero essere messi a rischio dall’impossibilità di produrre una materia prima in plastica riciclata che soddisfi le aspettative del cliente finale in fatto di odori. Il controllo analitico degli odori nelle materie di ingresso ci permettere di selezionare i fornitori, dividerli per categorie e stilare ricette di produzione che tengano conto dell’impronta odorosa dei prodotti in entrata. Lo stesso controllo analitico verrà utilizzato per controllare il processo di produzione e la formulazione corrette di ricette, non solo dal punto di vista tecnico estetico, ma anche odorifero, per dare al cliente finale una qualità in più sempre più ricercata dal mercato. E, infine, il commerciale può serenamente proporre un granulo che ha una patente per l’odore, non opinabile o discutibile attraverso altri nasi, soprattutto da quelli che sono addetti all’acquisto del granulo prodotto, ma attraverso una certezza fornita da un’analisi chimica dei componenti odorosi presenti nel prodotto. Come funziona questa tecnologia da laboratorio La tecnologia alla base della strumentazione di cui stiamo parlando è la GC IMS (Gas Cromatografia a mobilità ionica). Questa tecnologia si applica alle sostanze organiche volatili provenienti da uno spazio di testa statico generato in condizione standardizzate. Una colonna gas cromatografica permette il frazionamento preliminare delle sostanze volatili introdotte prima della entrata nel cuore dello strumento. Il cuore dello strumento è costituito da un tubo metallico di 9,8 cm al cui interno viene creato un campo elettrico di 5.000 Volt; le sostanze volatili provenienti dalla colonna cromatografica vengono ionizzate tramite una sorgente contenente trizio (una sostanza radioattiva a bassa intensità). Il processo di ionizzazione avviene a pressione ambiente e si basa sull’interazione fra l’acqua presente in tracce nel gas di azoto che fa da “carrier”: Il processo chimico-fisico di ionizzazione è tale per cui le sostanze volatili organiche come alcoli, aldeidi, chetoni, acidi carbossilici composti aromatici, ammine, tioli , composti alogenati , etc , vengono caricati elettricamente e rese quindi rilevabili dalla piastra di Faraday posta alla fine del tubo di volo. Le sostanze sopracitate sono quelle responsabili degli “odori “che vengono percepiti dall’ olfatto umano: va segnalata la “estrema sensibilità” del sistema di rilevazione che raggiunge il livello delle parti per miliardo (ppb). Il naso elettronico è quindi costituto da un rilevatore GC IMS, con accoppiato un autocampionatore che ha il compito di riscaldare i flaconi di vetro da 20 ml in cui si trovano le sostanze (liquide o solide) che sviluppano le sostanze volatili. La modalità di esecuzione delle analisi è estremamente semplice, dato che non vi è alcuna preparazione del prodotto da analizzare. Nel settore delle plastiche riciclate o da riciclare è veramente semplice preparare i campioni ed ottenere i tests. Il risultato analitico è costituito da un diagramma a tre dimensioni come una carta geografica delle montagne: la “carta geografica” indica il tempo di eluizione dalla colonna cromatografica, il tempo di volo e l’intensità del segnale di ogni singola sostanza organica volatile. Questa strumentazione permette quindi di confrontare in maniera “oggettiva“ delle plastiche riciclate che emettono delle sostanze organiche volatili percepibili all’ odorato.Categoria: notizie - tecnica - plastica - riciclo - gascromatografia a mobilità ionica - odori Links Utili:GRANULO IN PLASTICA RICICLATA DA POST CONSUMO CON CERTIFICAZIONE DELL’ODORE CONTROLLO ANALITICO DEGLI ODORI NEL SETTORE DEL RICICLO ODORI NEI POLIMERI RICICLATI: COME AFFRONTARE IL PROBLEMA? ODORI NELLA PLASTICA: CONTROLLARE LA FILIERA PER EVITARE CONTESTAZIONIINFO SULLA MACCHINA

SCOPRI DI PIU'
https://www.rmix.it/ - Bisfenolo A negli Imballi Alimentari: il Parere dell'EFSA
rMIX: Il Portale del Riciclo nell'Economia Circolare Bisfenolo A negli Imballi Alimentari: il Parere dell'EFSA
Informazioni Tecniche

Bisfenolo A negli Imballi Alimentari: il Parere dell'EFSAdi Marco ArezioCome abbiamo già avuto modo di trattare nell'articolo "Rivestimenti polimerici per imballi alimentari in metallo" il massiccio ricorso ai prodotti alimentari preconfezionati, siano essi con imballi di metallo, di plastica o di altri materiali, pone l'interrogativo delle possibili sostanze chimiche, potenzialmente pericolose per la salute umana, che si potrebbero generare all'interno della confezione.Alcune di queste sostanze possono essere generate dall'effetto cedente dei materiali da imballo verso il cibo, altre riguardano la cessione di sostanze chimiche che si generano dagli alimenti stessi a causa dell'imballo.Infatti, l'Autorità europea per la sicurezza alimentare (EFSA) ha riesaminato i rischi da Bisfenolo A (BPA) negli alimenti proponendo di abbassare considerevolmente la dose giornaliera tollerabile (DGT) rispetto a quella della sua precedente valutazione del 2015. Le nuove conclusioni dell'EFSA sul BPA vengono esposte in una bozza di parere scientifico disponibile a pubblica consultazione fino al 22 febbraio 2022. Tutte le parti interessate sono invitate a parteciparvi. La DGT è la stima della quantità di una sostanza (espressa in rapporto al peso corporeo in kg) che può essere ingerita quotidianamente nel corso dell’esistenza senza rischi degni di nota. Nella sua valutazione del rischio da BPA del 2015, l'EFSA aveva stabilito una DGT temporanea di 4 microgrammi per chilogrammo di peso corporeo al giorno. Nella sua bozza di valutazione ex novo del BPA, pubblicata oggi, il gruppo di esperti dell'EFSA sui materiali a contatto con gli alimenti, gli enzimi e i coadiuvanti tecnologici (gruppo CEP) ha stabilito una DGT di 0,04 nanogrammi per chilogrammo di peso corporeo al giorno. L'abbassamento della DGT è il risultato della valutazione di studi apparsi nella letteratura dal 2013 al 2018, in particolare quelli che evidenziano effetti avversi del BPA sul sistema immunitario: in studi su animali si è osservato un aumento del numero di cellule "T-helper", un tipo di globuli bianchi che svolge un ruolo fondamentale nei meccanismi immunitari cellulari e che, se aumenta, può portare allo sviluppo di infiammazioni polmonari allergiche. Confrontando la nuova DGT con le stime dell'esposizione dei consumatori al BPA tramite l'alimentazione, l'EFSA conclude che sia l'esposizione media che quella elevata al BPA superano la nuova DGT in tutte le fasce di età, dando così adito a preoccupazioni di termini di salute. Un approccio sistematico Il dr. Claude Lambré, presidente del gruppo CEP, ha dichiarato: "Questa bozza aggiornata è il risultato di un’accurata valutazione durata diversi anni. Abbiamo applicato un approccio sistematico per selezionare e valutare le evidenze disponibili. I nuovi studi scientifici apparsi nella letteratura ci hanno aiutato ad affrontare importanti elementi di incertezze circa la tossicità del BPA". L'EFSA ha già valutato la sicurezza del BPA destinato a materiali a contatto con gli alimenti nel 2006 e nel 2015. Allora i suoi esperti riuscirono a stabilire solo una DGT temporanea in ragione di alcuni elementi di incertezza , sottolineando la necessità di colmare le lacune riscontrate nei dati.Categoria: notizie - tecnica - plastica - riciclo - bisfenoloFonte: EFSA

SCOPRI DI PIU'
https://www.rmix.it/ - LDPE Riciclato da Post Consumo: 60 Tipologie di Odori Ostacolano la Vendita
rMIX: Il Portale del Riciclo nell'Economia Circolare LDPE Riciclato da Post Consumo: 60 Tipologie di Odori Ostacolano la Vendita
Informazioni Tecniche

LDPE Riciclato da Post Consumo: 60 Tipologie di Odori Ostacolano la Venditadi Marco ArezioLa raccolta differenziata degli imballi della plastica, specialmente per quelli in LDPE,  è una conquista moderna che permette, attraverso il riciclo, il riutilizzo degli imballi esausti con il duplice vantaggio di ridurre l’impronta carbonica e il prelievo di risorse naturali dalla terra per creare nuovi prodotti. Molto si deve ancora fare però nel settore del riciclo in quanto la quota di plastica che viene raccolta e riutilizzata è ancora largamente inferiore a quella che viene prodotta ogni giorno. Questo scompenso quantitativo tra quanto si ricicla e quanto si produce di nuovo ha molte cause: • Limitata diffusione della raccolta differenziata nel mondo • Difficoltà nel riciclo di molti imballi plastici multistrato • Bassa qualità della materia prima riciclata • Mancanza di una cultura del riciclo Nei paesi dove la raccolta differenziata è avviata e funziona stabilmente, la produzione di materia prima riciclata soffre di un giudizio abbastanza negativo sulla qualità della stessa, causata da fattori che dipendono anche, ma non solo, dalla filiera del riciclo meccanico. Questa valutazione negativa incide in maniera rilevante sulle vendite della materia prima riciclata, relegando il suo uso solo ad alcuni settori di impiego, riducendone quindi i quantitativi vendibili e abbassando il prezzo medio per tonnellata, che comporta, a sua volta, un basso margine economico per le aziende che riciclano. Inoltre, meno granulo riciclato si vende, meno rifiuto plastico si può riciclare e più grande diventa il problema del suo smaltimento, rischiando di far finire in discarica la preziosa materia prima che potrebbe essere riutilizzata. Tra i problemi di cui soffre la materia prima riciclata, nonostante l’enorme sviluppo impiantistico del settore, quello dell’odore è tra i più sentiti dai clienti che potrebbero utilizzarla per produrre film, imballi rigidi, materiali per il settore edile, per l’automotive, giardinaggio, mobili e molti altri prodotti. Ad oggi la percezione dell’odore di una materia prima plastica proveniente dal post consumo è affidata, in modo del tutto empirico, ad una sensazione nasale di chi la produce e di chi la utilizza, che valutano in modo estremamente soggettivo sia la tipologia che l’intensità degli odori presenti nella plastica riciclata. Valutazione che poi si può scontrare con il cliente finale che comprerà il prodotto realizzato e darà un’ulteriore valutazione, personale, dell’odore. Il naso umano è sicuramente uno strumento eccellente ma ogni persona percepisce le sollecitazioni odorose in modo del tutto personale, ed è per questo che, in casi particolari, si assoldano gruppi di persone che insieme fanno valutazioni sugli odori da intercettare. Se prendiamo ad esempio la filiera del riciclo delle materie plastiche, partendo dalla raccolta differenziata, si è visto che i sacchi in LDPE e gli imballi flessibili che vanno al riciclo, portano con sé un numero elevatissimo di sostanze chimiche che generano odori nella filiera del riciclo. La rilevazione delle fonti degli odori non è stata studiata attraverso metodi sensoriali empirici, quindi attraverso il naso umano, ma attraverso un’indagine chimica svolta da uno strumento di laboratorio che consiste in un gascromatografo con uno spettrometro a mobilità ionica. Questo strumento ha analizzato i componenti chimici, all’interno di una larga campionatura di LDPE riciclato proveniente dalla raccolta differenziata, andando ad individuare 60 tipologie di sostanze chimiche che generano odori. La campionatura analizzata proveniva dal ciclo meccanico tradizionale di riciclo in cui il materiale viene selezionato, triturato e lavato con una permanenza in acqua di circa 15 minuti. Gli odori più comuni percepiti dal naso umano, di questa campionatura sono stati:• Muffe • Urina • Formaggio • Terra • Fecale • Sapone • Caffè • Sudato • Peperone Queste famiglie di odori percepite sono create da circa 60 composti chimici che si associano durante la fase di raccolta e lavorazione della plastica riciclata. Si sono individuati alcuni punti critici:  Il sacco della raccolta differenziata che contengono gli imballi plastici domestici da selezionare in cui troviamo diverse tipologie di polimeri, possono contenere residui di sostanze come detersivi, cibo, oli, disinfettanti, prodotti chimici, creme e molti altri. Questo miscuglio di elementi chimici diversi si può legare alla superficie della plastica ma, in funzione del tempo di sodalizio, potrebbe anche penetrare al suo interno.  La selezione tra le varie plastiche, attraverso macchine a lettori ottici, crea una certa percentuale di errore che si traduce nella possibilità di avere quantità di plastiche miste all’interno della frazione selezionata.  La fase di lavaggio del macinato plastico ha la funzione di dividere ulteriormente, per densità, le plastiche immesse e ha lo scopo di pulirle dai residui di prodotti che gli imballi hanno contenuto o sono venuti in contatto. Ad eccezione del PET, gli altri polimeri provenienti dalla raccolta differenziata, vengono generalmente lavati in acqua fredda, processo che non incide in maniera rilevante nel processo di pulizia al fine di abbattere gli odori.  La fase di estrusione del materiale lavato, per la formazione del granulo, potrebbe comportare un degradamento della materia prima in cui sono presenti frazioni di polimeri diversi da quella principale che quindi fonderanno a temperature diverse. Questo può causare la formazione di elementi chimici che daranno origine ad odori. Intervenire su queste fasi porterebbe a miglioramento significativo della qualità dei polimeri da post consumo prodotti, non solo attraverso un abbattimento delle tipologie e dell’intensità degli odori, ma ne migliorerebbe anche le performace tecniche. Il controllo analitico degli odori, attraverso strumenti che ne rilevino le genesi chimiche, può aiutare non solo in fase di certificazione del livello odoroso della materia prima finale in modo inequivocabile e non più empirico, ma darebbe un importante supporto anche in fase di creazione di ricette sulle tipologie di materia prima da usare durante le fasi di riciclo del rifiuto plastico, sull’individuazioni delle fonti migliori e sui risultati dei processi produttivi nello stabilimento (selezione, lavaggio ed estrusione). Ridurre gli odori e migliorare la qualità del granulo da post consumo porterebbe all’apertura di nuovi mercati nei quali si potrebbe impiegare la materia prima riciclata al posto di quella vergine con un vantaggio ambientale, economico e industriale.Categoria: notizie - tecnica - plastica - riciclo - LDPE - post consumo - odoriVedi maggiori informazioni sul riciclo dell'LDPE

SCOPRI DI PIU'
https://www.rmix.it/ - Il Packaging Attivo Moderno con Radici Millenarie
rMIX: Il Portale del Riciclo nell'Economia Circolare Il Packaging Attivo Moderno con Radici Millenarie
Informazioni Tecniche

Studiare come l’imballo interagisce con il prodotto contenuto, di come il tempo, la struttura, la chimica fa evolvere questa relazionedi Marco ArezioIl packaging attivo attuale è ben definito dal regolamento CE 450/2009 che recita: “… per materiali e oggetti attivi destinati a venire a contatto con i prodotti alimentari s’intendono materiali e oggetti destinati a prolungare la conservabilità o mantenere o migliorare le condizioni dei prodotti alimentari imballati. Essi sono concepiti in modo da incorporare deliberatamente componenti che rilasciano sostanze nel prodotto alimentare imballato o nel suo ambiente, o le assorbano dagli stessi”.Sembra essere una conquista dei nostri tempi quella di conservare meglio i prodotti all’interno degli imballi, che siano alimentari o di altri prodotti, facendoli, a volte interagire con l’imballo che li contengono. Questo significa preoccuparsi e studiare come l’imballo interagisce con il prodotto contenuto, di come il tempo, la struttura, la chimica fa evolvere questa relazione, verificandone alla fine i pro e i contro, sul prodotto che verrà utilizzato. In realtà il problema è già stato in qualche modo affrontato nel corso dei millenni passati, anche senza avere a disposizione i molteplici imballi di cui disponiamo oggi. Non c’era la plastica, l’alluminio, il Tetra Pack, ma il legno, il vetro e la ceramica si, e soprattutto attraverso le botti di legno, i nostri predecessori intuirono che la botte aveva una relazione stretta con la qualità finale del vino. Infatti intuirono che le botti di legno pregiato cedevano ai vini e ai distillati sostanze polifenoliche che miglioravano il colore, il sapore e l’aroma del prodotto. Oggi, con l’aumento delle tipologie di imballo a nostra disposizione, si sono moltiplicati anche i problemi che dobbiamo considerare e risolvere al fine di controllare le reazioni avverse tra imballo e prodotto e favorire quelle positive. Tra quelle indesiderate o dannose possiamo elencare: L’Umidita. Questa favorisce la proliferazione delle muffe e dei batteri in alcuni casi, mentre in altri è necessario controllare la respirazione aerobica dei vegetali e dei microrganismi. Per questi motivi è necessario agire in modo da poter controllare lo sviluppo dell’umidità nelle confezioni in base al tipo di prodotto contenuto. Per fare questo è possibile utilizzare sacchetti contenenti gel di silice, cloruro di calcio e ossido di calcio, oppure materiali multistrato contenenti composti igroscopici, come il Pitchit film. L’Ossigeno. E’ noto a tutti che la presenza di ossigeno faciliti la riduzione della durata dei prodotti alimentari conservati a seguito delle reazioni (ossidazioni chimiche ed enzimatiche, degradazione dei pigmenti e degli aromi) e dei metabolismi (respirazione aerobica, proliferazione di batteri aerobi, muffe e lieviti). Un sistema ampiamente usato è la conservazione dei cibi attraverso il sottovuoto, ma esistono altri metodi, come le bustine che assorbono l’ossigeno, costituiti da piccoli elementi che, attraverso una reazione chimica tra Fe metallico e O2, ne riducono la presenza all’interno dell’imballo. Questa metodologia non è applicabile a tutti gli imballi in quanto la reazione chimica è innescata in presenza di un certo grado di umidità e la presenza di ferro può interferire con i sistemi logistici automatizzati in presenza di metal detector. L’Etilene. L’etilene è un ormone vegetale che influenza il processo aerobico e la maturazione di molti frutti, pertanto la sua riduzione produce un rallentamento della maturazione del prodotto. Si possono inserire negli imballi delle sostanze capaci di adsorbire l’etilene, quali carbone attivo, gel di silice e zeoliti. Composti volatili derivanti dalla degradazione degli alimenti. Specialmente la degradazione lipidica e proteica degli alimenti produce delle sostanze volatili di odore sgradevole. Le aldeidi volatili (esanale, nonanale, ecc.) prodotte durante l’ossidazione dei lipidi insaturi, possono essere intercettate da composti chimici inseriti nei copolimeri poliolefinici (PE/PP). Esistono altre sostanze chimiche, come il solfuro di idrogeno (H2S) e i mercaptani (R-SH) volatili, che vengono generati dalla degradazione proteica, possono essere sequestrati con adsorbenti specifici. Ci sono poi delle sostanze protettive e migliorative che interagiscono con i prodotti contenuti negli imballi. Facendo una rapida carrellata possiamo citare: Gli Antiossidanti. Contenuti nei materiali plastici destinati alle produzioni per il packaging favoriscono un’azione protettiva nel tempo. Esistono anche antiossidanti naturali, come l’α-tocoferolo, che viene aggiunto nella produzione di film specifico per l’imballo. Gli Antimicrobici naturali. Sono sostanze deputate al controllo della proliferazione microbica negli alimenti che interagiscono con l’umidità e la temperatura all’interno dell’imballo a contatto con il prodotto fresco. Categoria: notizie - tecnica - plastica - packaging - imballo

SCOPRI DI PIU'
https://www.rmix.it/ - Se il cibo è consumabile te lo dice la nuova bio pellicola
rMIX: Il Portale del Riciclo nell'Economia Circolare Se il cibo è consumabile te lo dice la nuova bio pellicola
Informazioni Tecniche

Il nuovo packaging cambia colore in base alla qualità del cibo che contiene di Marco ArezioLa ricerca universitaria e scientifica nel campo del packaging si sta concentrando sul problema della effettiva scadenza dei cibi, studiando bio pellicole che possano aiutarci a classificare, oltre all’etichetta apposta, la reale qualità del cibo contenuto. Le nuove bio pellicole sono formate da bio plastiche, realizzate dalla trasformazione dello zucchero contenuto nelle barbabietole e nel mais, alle quali vengono aggiunti additivi provenienti dagli scarti del settore agroalimentare. Questi additivi sono, a loro volta, scarti della filiera agroalimentare come la canapa, il lino, gli scarti del caffè, vari scarti di vegetazione, e altri prodotti naturali. Hanno diverse proprietà che possiamo riassumere: Buone proprietà meccaniche Resistenza al fuoco Proprietà antiossidanti Proprietà antifungine Proprietà antimicrobiche Tra gli additivi di cui abbiamo parlato prima, l’aggiunta di ossido di zinco e alluminio, nella produzione delle bio pellicole, sviluppa delle proprietà antimicrobiche che possono allungare la scadenza dei prodotti freschi, riducendo così gli sprechi dato dalla scadenza dei prodotti. Mentre l’aggiunga di un additivo come l’olio di cardarolo e una particolare molecola chiamata porfirina, attribuiscono alla pellicola proprietà antiossidanti e antifungine, che nel campo del packaging alimentare aiutano a segnalare il deterioramento del prodotto. Ma come avviene questo meccanismo? Quando la bio pellicola entra in contatto con alcuni analiti, come l’acqua, l’etanolo, l’ammoniaca o altri prodotti che derivano dalla degradazione alimentare, in combinazione con la luce, questi elementi tossici penetrano nel polimero della pellicola creando reazioni di colore. Le pellicole realizzate in laboratorio sono completamente biodegradabili e bio compostabili, questo significa che alla fine del loro ciclo di vita possono diventare concime e rientrare nel pieno rispetto della circolarità dei prodotti.Categoria: notizie - tecnica - plastica - etichetta - packaging - imballoVedi maggiori informazioni sul packaging alimentare

SCOPRI DI PIU'
https://www.rmix.it/ - Sacchetti in LDPE Riciclato: Come Evitare Problemi Qualitativi
rMIX: Il Portale del Riciclo nell'Economia Circolare Sacchetti in LDPE Riciclato: Come Evitare Problemi Qualitativi
Informazioni Tecniche

Sacchetti in LDPE Riciclato: Come Evitare Problemi Qualitatividi Marco ArezioIl mondo dei sacchetti in LDPE riciclato è ampiamente rappresentato dalla tipologia che usiamo tutti i giorni per la raccolta differenziata che, attraverso il loro diverso colore, ci aiutano a separare in modo corretto i rifiuti.La tendenza nella produzione del sacchetto era rappresentata dalla riduzione massima dello spessore e dall’uso di materie prime sempre meno qualitative. Tutto questo rientrava in una logica di mercato in cui il sacchetto doveva costare sempre meno, creando quindi dei prodotti sempre meno performanti dal punto di vista qualitativo.Le problematiche maggiori che si riscontravano erano le seguenti:• Fragilità del sacco sotto l’effetto del peso del rifiuto introdotto con rottura delle pareti per sfondamento • Scollamento dei punti di saldatura delle labbra del sacco con apertura verticale dello stesso • Taglio del sacchetto in presenta di impurità nella parete • Irregolarità della superficie con fenomeni chiamati “occhio di pernice” • Difficoltà nella realizzazione dei colori • Odore pungente dei sacchi anche dopo molto tempo • Secchezza del sacchetto a causa dell’uso di film raccolti degradati dal sole, specialmente per lo scarto che proviene dalle serre agricole Tutti questi problemi sarebbero da analizzare singolarmente in quanto ogni punto ha una lunga storia da raccontare e un chiaro percorso per la sua risoluzione. Nell’articolo di oggi facciamo un salto, arrivando direttamente alle ricette che possono risolvere tutte queste problematiche, permettendo la produzione di sacchi qualitativamente corretti con un occhio ai costi generali di produzione. La maggior parte dei problemi elencati derivano dall’uso al 100% di un input da post consumo, da raccolta differenziata o dei teli agricoli, il cui riciclo meccanico, seppur eccellente con le nuove linee produttive, comporta molte delle problematiche citate. Sicuramente ad una maggior qualità delle linee di riciclo, intese come selezione, lavaggio, densificazione, filtrazione ed estrusione dei granuli, corrisponde una minore quantità ed importanza di problemi, ma il riciclo meccanico del rifiuto proveniente dalla raccolta differenziata o dal settore agricolo, ha comunque dei limiti qualitativi ad oggi non ancora risolti. Per questo motivo l’attenzione alla preparazione di ricette per compounds, realizzati con l’attenzione alla risoluzione di questi problemi, dà la possibilità di creare dei granuli in LDPE, provenienti dal riciclo, con qualità superiori, rimanendo nell’ottica dell’economia circolare che impone il consumo dei rifiuti che realizziamo quotidianamente. Il compound dovrebbe contenere una parte significativa di un input di film di LDPE che non provenga dalla raccolta differenziata, non necessariamente di provenienza post industriale, ma da uno scarto che non sia stato mischiato e inquinato da altre materie plastiche miste. In base alla caratteristica del prodotto finale da realizzare, si deciderà come comporre la ricetta dell’input, così da poter garantire la qualità attesa dal cliente. Gli indici qualitativi devono risolvere i problemi di cui abbiamo parlato tenendo conto di alcune indicazioni:• Permettere la produzione del sacco a partire da 20 micron • L’elasticità deve essere maggiore rispetto ad una ricetta con il 100% post consumo • La tenuta delle saldature, anche a freddo e sotto il peso del contenuto del sacco, deve essere elevata. • L’assenza di piccoli corpi estranei, che si formano a causa della degradazione di materiali differenti dall’LDPE in fase di estrusione, che incidono sul taglio longitudinale accidentale del prodotto. • Poter realizzare una superficie liscia, senza piccole corrugazioni o irregolarità. • La ricetta deve prevedere la possibilità di fare film con colori chiari e scuri, semitrasparenti negli spessori minori. • Assenza o la riduzione marcata dell’odore pungente tipico del post consumo deve poter essere perseguita. Sulla scorta di una modulazione corretta dell’input del materiale e l’attenzione alle fasi eli riciclo e granulazione, è possibile migliorare in modo notevole la qualità dei sacchetti in LDPE che si producono, con un maggiore margine di contribuzione sulla produzione e una maggiore soddisfazione del cliente finale, avendo sempre sotto controllo i costi. Categoria: notizie - tecnica - plastica - riciclo - LDPE - post consumo - sacchetti - film - qualità Articoli correlati:CHE QUALITÀ DI FILM È OTTENIBILE CON L'USO DELL' LDPE RICICLATO?LDPE RICICLATO DA POST CONSUMO: 60 TIPOLOGIE DI ODORI OSTACOLANO LA VENDITALDPE DA POST CONSUMO. COME RIDURRE LE IMPERFEZIONI. EBOOKVedi maggiori informazioni sul riciclo dell'LDPE

SCOPRI DI PIU'
https://www.rmix.it/ - HDPE: Produzione di Flaconi con Plastica Riciclata | Alcuni Consigli
rMIX: Il Portale del Riciclo nell'Economia Circolare HDPE: Produzione di Flaconi con Plastica Riciclata | Alcuni Consigli
Informazioni Tecniche

Come risolvere i problemi estetici nella produzione di flaconi in HDPE riciclatodi Marco Arezio La richiesta di HDPE rigenerato per soffiaggio ha avuto una forte impennata negli ultimi anni, trovando sicuramente, una parte dei produttori, non totalmente preparati a gestire il granulo riciclato nelle proprie macchine. Non è stata solo una questione di tipologia di granulo che può differire leggermente, dal punto di vista tecnico, dalle materie prime vergini nel comportamento in macchina, ma si sono dovute affrontare problematiche legate alla tonalità dei colori, allo stress cracking, alla tenuta delle saldature, ai micro fori e ad altre questioni minori. In articoli precedenti abbiamo affrontato la genesi dell’HDPE riciclato nel soffiaggio dei flaconi e la corretta scelta delle materie prime riciclate, mentre oggi vediamo alcuni aspetti estetici che potrebbero presentarsi usando il granulo riciclato in HDPE al 100%. Ci sono quattro aspetti, dal punto di vista estetico, che possono incidere negativamente sul buon risultato di produzione: 1) Una marcata porosità detta “buccia d’arancia” che si forma prevalentemente all’interno del flacone ma, non raramente, è visibile anche all’esterno. Si presenta come una superficie irregolare, con presenza di micro cavità continue che danno un aspetto rugoso alla superficie. Normalmente le problematiche sono da ricercare nel granulo, dove una possibile presenza eccessiva di umidità superficiale non permette una perfetta stesura della parete in HDPE in uscita dallo stampo. In questo caso il problema si può risolvere asciugando il materiale in un silos in modo che raggiunga un grado di umidità tale per cui non influirà negativamente sulle superfici. In linea generale è sempre un’operazione raccomandata quando si vuole produrre utilizzando al 100% un materiale rigenerato. 2) Le striature sul flacone sono un altro problema estetico che capita per ragioni differenti, specialmente se si utilizza un granulo già colorato. Le cause possono dipendere da una percentuale di plastica diversa all’interno del granulo in HDPE, anche in percentuali minime, tra il 2 e il 4 %, in quanto, avendo le plastiche punti di fusione differenti, il comportamento estetico sulla parete del flacone può essere leggermente diverso, andando ad influenzare il colore nell’impasto. E’ importante notare che non si devono confondere le striature di tonalità con le striature di struttura, le quali sono normalmente creare dallo stampo del flacone a causa di usura o di sporcizia che si accumula lavorando. Un altro motivo può dipendere dalla resistenza al calore del master che si usa, in quanto non è infrequente che a temperature troppo elevate, sia in fase di estrusione del granulo che di soffiaggio dell’elemento, si possa creare un fenomeno di degradazione del colore con la creazione di piccole strisciate sulle pareti del flacone. 3) Una perfetta saldabilità in un flacone è di estrema importanza in quanto un’eventuale distacco delle pareti, una volta raffreddato e riempito il flacone, comporta danni seri con costi da sostenere per la perdita dell’imballo, delle sostanze contenute e della sostituzione del materiale con costi logistici importanti. Il flacone appena prodotto normalmente non presenta il possibile difetto in quanto la temperatura d’uscita dalla macchina “nasconde” un po’ il problema, ma una volta che la bottiglia si è raffreddata, riempita e sottoposta al peso dei bancali che vengono impilati sopra di essa, un difetto di saldatura si può presentare in tutta la sua problematica. La causa di questo problema normalmente deve essere ricercata nella percentuale di polipropilene che il granulo in HDPE può contenere a causa di una selezione delle materie prime a monte della produzione del granulo non ottimale. Una scadente selezione dei flaconi tra di essi, ma soprattutto dai tappi che essi contengono, possono aumentare la quota percentuale di polipropilene nella miscela del granulo. Esistono in commercio macchine a selezione ottica del macinato lavato che aiutano a ridurre in modo sostanziale questa percentuale, potendola riportare sotto 1,5-2%. Al momento dell’acquisto del carico di HDPE riciclato è sempre buona cosa chiedere un test del DSC per controllare la composizione del granulo per la produzione. L’effetto di una percentuale di PP eccessiva ha come diretta conseguenza l’impedimento di una efficace saldatura delle superfici di contatto che formano il flacone. Oltre ad intervenire sul granulo sarebbe buona regola, se si desiderasse utilizzare al 100% la materia prima riciclata, aumentare leggermente lo spessore di sovrapposizione delle due lati del flacone per favorirne il corretto punto di saldatura. 4) La presenza di micro o macro fori in un flacone, visibili direttamente attraverso un’ispezione o, per quelli più piccoli, tramite la prova della tenuta dell’aria, possono dipendere dalla presenza di impurità all’interno del granulo, quando il lavaggio e la filtratura della materia prima non è stata fatta a regola d’arte. Un altro motivo può dipende da una scarsa pulizia della vite della macchina soffiatrice che può accumulare residui di polimero degradato e trasportarli, successivamente, all’esterno verso lo stampo. Specialmente se si usano ricette con carica minerale è possibile che si presenti il problema subito dopo il cambio della ricetta tra una senza carica a una che la contenga.Categoria: notizie - tecnica - plastica - riciclo - HDPE - post consumo - flaconi

SCOPRI DI PIU'
https://www.rmix.it/ - Odori nella Plastica: Controllare la Filiera per Evitare Contestazioni
rMIX: Il Portale del Riciclo nell'Economia Circolare Odori nella Plastica: Controllare la Filiera per Evitare Contestazioni
Informazioni Tecniche

Odori nella Plastica: Controllare la Filiera per Evitare Contestazionidi Marco ArezioSe è risaputo che nei rifiuti provenienti dalla raccolta differenziata e quindi dal post consumo, la presenza degli odori può permanere in modo consistente, una volta trasformato in granulo, le aspettative sulle produzioni di materia prima dagli scarti post industriali o dai compounds post industriali + post consumo, dal punto di vista degli odori, sono decisamente più alte.Così alte, che ci si aspetta di non dover affrontare la problematica di consegnare al cliente, granuli plastici adatti a produrre articoli che fino a pochi anni fa erano fatti con materia prima vergine, che contengano un gradiente odoroso sgradevole. Le ambizioni qualitative di questi clienti che comprano la materia prima in plastica riciclata, rimangono elevate (quasi comprassero ancora una materia prima vergine), così da poter fregiarsi di produzioni green, ma nello stesso tempo non dover rischiare di perdere i loro clienti finali per una questione legata ad odori sgradevoli. Un binomio di richieste davvero difficile da sostenere, dove il produttore di materia prima plastica riciclata deve trovare soluzioni certe per controllare la sua filiera produttiva, con lo scopo di evitare di acquistare scarti e gestire processi che potrebbero incrementare il problema. Ma quali strumenti oggi abbiamo per poter creare una strategia di controllo che ci avverta quando uno scarto plastico in ingresso possa provocare odori nel granulo finale, con la conseguente possibile contestazione del cliente che lo compra, o quali strumenti abbiamo per capire se l’estrusione della materia prima crei dei processi di degradazione che potrebbero generare odori? Per prima cosa possiamo dire che lo strumento per il controllo degli odori in tutte le fasi della produzione esiste, ci dà una fotografia chimica dei nostri processi e ci indica dove può trovarsi l’errore che causerà la contestazione. Questa macchina da laboratorio, grande quanto una stampante da scrivania, è un gascromatografo unito ad uno spettrometro a mobilità ionica che, attraverso un’analisi veloce e senza una preparazione dei campioni particolare, ci dice quale sia, chimicamente, l’origine delle fragranze che il naso umano intercetta ma che non sa separarle e capirne la provenienza. Se pensate possa essere utile solo per dare una patente odorifera al granulo plastico che producete, siete solo a un terzo della strada, in quanto l’aiuto che questo tipo di analisi può dare all’azienda non è solo il controllo finale della materia prima, ma individuare le fasi critiche della produzione in modo da evitare che gli odori si formino. Le aree di impiego della tecnologia si possono qui riassumere: Acquisto degli scarti plastici per la produzioneChe siano post consumo o post industriali, un’azienda che produce granulo riciclato ha diversi fornitori di scarti plastici e, non tutti lo lavorano nello stesso modo: lavaggi con efficacia differenti, selezione del rifiuto con impianti e metodologie diverse, rischi di contaminazioni degli scarti con altre plastiche e molte altre situazioni simili. Quindi è necessario costruire un’anagrafica qualitativa dei fornitori, per quanto riguarda gli odori degli scarti, in modo che si possa, chimicamente, avere una fotografia di cosa lo scarto può contenere e come questo scarto potrebbe comportarsi nella sua trasformazione in granulo plastico. L’analisi chimica dei flussi in ingresso ci fa capire quale fornitore, per materia prima, possiamo utilizzare per creare le nostre ricette di granulo, senza che si possano generare spiacevoli inconvenienti odorosi in fase di produzione. Le analisi dei flussi creano una banca dati attraverso la quale si può attribuire un determinato scarto, di un determinato fornitore ad una nostra determinata ricetta. Se la fotografia chimica di un flusso di scarti plastici contempla la presenza di una serie di composti chimici in una determinata quantità, possiamo sapere con certezza quale impronta odorosa avrà il nostro granulo finale. Granulazione degli scarti plasticiIn questa fase può succedere che, senza una fotografia chimica dell’input che entra nell’estrusore, lo scarto possa essere utilizzato per la produzione di granulo, senza che possiamo intercettare un disturbo odoroso particolare, confidando quindi di produrre un granulo di buona qualità, confortati magari dal fatto che le analisi di laboratorio che normalmente si fanno, come la densità, il DSC, le ceneri e la fluidità, ci dicano che il materiale può essere idoneo. Ma durante la produzione ci possono essere frazioni molto piccole, in termini di quantità, di materiali estranee alla materia prima principale, che possono degradare creando segnali odorosi importanti che potrebbero far contestare il materiale. La fotografia chimica ci restituisce delle indicazioni che sono espresse in valori così piccoli che i composti chimici in ingresso nell’estrusore e quelli che si possono generare durante la lavorazione, siano precisamente intercettati e definiti analiticamente. Quindi anche il controllo della fase di estrusione delle materie plastiche riciclate ci restituisce un quadro preciso, non empirico degli odori, sui quali poter lavorare per un eventuale aggiustamento delle ricette. Controllo di qualità nella vendita e nel post venditaCome si può definire un odore di un polimero riciclato? Visto dal produttore in un modo, visto da un acquirente magari in un altro. Questa differenza di valutazione crea il maggior numero di contestazioni e di imbarazzi commerciali che, a volte, si chiude con una resa del produttore per mancanza di prove certe. Questa resa si trasforma quasi sempre in danni economici da riconoscere al cliente da parte del produttore di polimeri ma, nella maggior parte delle volte, subentra anche un’incertezza commerciale tra cliente e fornitore gestita in modo del tutto empirico attraverso la prova del naso. Il cliente ha i suoi uomini che annusano l’odore del granulo che ricevono e ne danno una valutazione, mentre il fornitore fornisce la sua squadra. In tutte e due i casi il naso umano, per quanto sofisticatissimo, può interpretare l’odore in modo differente. Per risolvere l’incertezza, le possibili contestazioni e la possibile perdita di fiducia da parte del cliente, fornire allo stesso una fotografia chimica di ciò che si sta vendendo è il miglior modo per dimostrare che il prodotto è formato da elementi chimici che possono generare gradienti di odori nei limiti che il cliente ha preventivamente accettato, non attraverso un naso opinabile ma attraverso la chimica. Infatti cliente e fornitore possono creare, in modo certo e analitico, un accordo che limiti certe sostanze chimiche che generano gli odori a dei valori accettati da entrambe le parti.Categoria: notizie - tecnica - plastica - riciclo - odori - post consumo - contestazioniVedi maggiori informazioni sulla gascromatografia

SCOPRI DI PIU'
https://www.rmix.it/ - Rivestimenti Polimerici per Imballi Alimentari in Metallo
rMIX: Il Portale del Riciclo nell'Economia Circolare Rivestimenti Polimerici per Imballi Alimentari in Metallo
Informazioni Tecniche

Rivestimenti Polimerici per Imballi Alimentari in Metallodi Marco ArezioLe scatole in metallo per la conservazione degli alimenti hanno una lunga storia ma se nel passato, presentavano delle carenze dal punto igienico e tossicologico, specialmente a causa delle saldature che venivano fatte in lega Sn-Pb, attualmente la qualità dei prodotti costruiti sono decisamente elevate. Oggi la protezione degli alimenti è principalmente affidata allo strato polimerico di rivestimento interno, detto coating, che si frappone tra la parete di metallo e il cibo contenuto. La funzione primaria di questa barriera è quello di proteggere i prodotti alimentari dalla luce, l’ossigeno, gli enzimi, l’umidità, gli inquinanti e i microorganismi che ne comporterebbero la modificazione della struttura dell’alimento e la sua qualità. Lo scopo è anche quello di aumentare la vita utile dell’alimento o della bevanda che in condizioni normali, cioè non inscatolato, si deteriorerebbe con più velocità, in quanto le reazioni biochimiche, enzimatiche e l’attività dei microorganismi farebbero normalmente il loro corso. Quindi, per aumentare la vita degli alimenti, le confezioni in metallo vengono normalmente rivestite con film di resine sintetiche applicate sul foglio metallico ancora piano, film che assume spessori di pochi micron. La scelta del tipo di resina dipende dalle sue caratteristiche meccaniche, chimiche o termiche in base al contenuto che devono ospitare. Qui di seguito possiamo elencare le principali: • Colofonia è costituita principalmente da acido abietico, che viene normalmente additivata con ZnO per controllare le reazioni chimiche che si formano attraverso gli aminoacidi solforati delle proteine. • Resine Viniliche sono della famiglia delle resine termoplastiche, normalmente PVC, che hanno un’ottima resistenza agli acidi, ma hanno il difetto di assorbire i pigmenti degli alimenti. • Resine Fenoliche vengono composte attraverso la polimerizzazione della formaldeide e del fenolo che hanno un’ottima resistenza ai trattamenti termici, al PH e ai grassi. Attraverso il contenuto di formaldeide possiamo identificare due famiglie di resine fenoliche: Novolacche (termoplastiche) e Resoli (termoindurenti). • Resine Epossidiche sono resine termoindurenti costituite dal Bisfenolo A e dall’Epicloridrina che costituiscono il rivestimento più comune negli alimenti in scatola soprattutto nei cibi sott’olio a base di pesce. • Resine Poliestere sono resine termoindurenti ottenute da diversi monomeri come l’Anidride Ftalica, l’Anidride Maleica o l’Acido Fumarico, integrati con oli vegetali e pigmenti. Hanno la caratteristica della flessibilità dando allo strato della parete metallica questa caratteristica. • Resine Epossi-Fenoliche sono il risultato della polimerizzazione delle resine epossidiche con quelle fenoliche attraverso dei catalizzatori. Sono utilizzate come rivestimento trasparente di molte scatole metalliche in cui sono contenute conserve in olio, vegetali o cibi per animali. Per quanto riguarda le caratteristiche tossicologiche esistono norme di legge specifiche che pongono limiti sulla possibile migrazione delle sostanze del packaging negli alimenti, in cui si prendono in considerazione sia la migrazione specifica che la migrazione globale. Tuttavia la comunità scientifica ha dato nuovo impulso agli studi e alle ricerche sugli aspetti tossicologici relativi alle materie plastiche impiegate nell’industria alimentare, con particolare attenzione non più al singolo elemento che costituisce l’imballo, ma tiene in considerazione l’effetto cocktail che è dato da tutti gli elementi che vengono a contatto con il cibo, traslati nel tempo e con caratteristiche termiche differenti. Indubbiamente il cibo o la bevanda contenuti nel packaging al momento dell’imballo hanno determinate caratteristiche, ma a distanza di tempo e in condizioni climatiche differenti, la qualità del cibo che arriva sulla tavola potrebbe essere differente. Quindi sarebbe consigliabile una verificata attraverso un’analisi chimica, a campione, con uno strumento composto da un gascromatografo e uno spettrometro a mobilità ionica che, in modo semplice e rapido,  daranno la fotografia, analitica, della qualità del cibo o delle bevande.Categoria: notizie - tecnica - plastica - riciclo - metallo - imballi - packaging Vedi maggiori informazioni sulle materie plastiche

SCOPRI DI PIU'
https://www.rmix.it/ - Le Bottiglie in Plastica Possono Cedere Sostanze all’Acqua Contenuta?
rMIX: Il Portale del Riciclo nell'Economia Circolare Le Bottiglie in Plastica Possono Cedere Sostanze all’Acqua Contenuta?
Informazioni Tecniche

Scopriamolo verificando l’acqua contenuta in una bottiglia di PET utilizzando il naso elettronicodi Marco Arezio Il packaging delle bibite e dell’acqua minerale è passata, nel giro di pochi anni, dalle bottiglie di vetro a quelle di plastica per una serie di importanti di fattori che hanno fatto di questo sistema di imbottigliamento il più usato in assoluto al mondo. Intorno alle bottiglie di plastica, in particolar modo al suo materiale primario, il PET, si sono sviluppate campagne di sostegno e campagne di denigrazione tra le più aspre, giocate tra i produttori di bibite, i produttori di materie prime, la distribuzione e il cittadino. I temi fortemente discussi sono ambientali, da una parte, rivendicando una sorta di patente di inquinatori da parte dell’opinione pubblica verso i produttori di bottiglie in PET, a causa della massiccia presenza nei mari dei prodotti usa e getta. E’ ovvio a tutti che i produttori di bottiglie in plastica non hanno nessuna parte a questo disastro ambientale che è da attribuire al consumatore finale, che non si preoccupa di conferire la bottiglia vuota a centri di riciclo o a provvedere al suo riutilizzo. Dall’altra parte i produttori di bibite hanno identificato nella bottiglia in plastica, tra l’altro, oggi, costituita da una parte di materiale riciclato, un grande vantaggio in termini di costi di produzione, di risparmio sulla logistica e di un impatto ambientale, in fase di produzione, minore rispetto ad altri materiali per il packaging. Ma c’è un’altra questione da considerare, e cioè il rapporto tra la bottiglia in plastica e il suo contenuto, l’acqua per esempio, rapporto che è un matrimonio solidale finché l’acqua non viene utilizzata dal consumatore. Durante la permanenza dell’acqua nelle bottiglie di plastica, tra il momento dell’imbottigliamento e il momento del suo consumo, la bottiglia può ricevere gli effetti della luce, dell’irraggiamento solare e dell’aumento delle temperature della plastica sotto l’effetto del sole. Ogni modifica delle condizioni standard della plastica, caldo, freddo, luce, tempo di vita della bottiglia, che possono modificare la struttura della plastica, potrebbero essere condivisibile con l’acqua contenuta che il consumatore di beve. Come facciamo a sapere se elementi volatili che nascono a seguito delle possibili mutazioni della plastica si trasmettano o meno nell’acqua? Non assaggiandola, in quanto alcune sostanze che potrebbero essere cedute possono essere insapori, non guardandola controluce, perché alcune sostanze potrebbero essere non visibili ad occhio nudo. Oggi abbiamo a disposizione uno strumento di laboratorio di piccole dimensioni ma efficacissimo, chiamato naso elettronico, che analizza in modo scientifico gli elementi volatili dei materiali. Attraverso la campionatura di porzioni di acqua contenute in varie bottiglie in plastica si inseriscono le provette nel naso elettronico e, in modo automatico, si riscaldano i campioni creando delle parti volatili che vengono intercettate da un gascromatografo (GC), che dialoga con uno spettrometro a mobilità ionica (IMS), i quali ci restituiscono un esame tridimensionale delle parti volatili contenute nell’acqua andando ad indentificare esattamente la quantità e la tipologia chimica dei composti contenuti. Cosa beviamo dunque? Acqua o altro? Ce lo dirà il naso elettronico.Categoria: notizie - tecnica - plastica - riciclo - PET - packaging - bottiglie

SCOPRI DI PIU'
24 risultati
1 2

CONTATTACI

Copyright © 2024 - Privacy Policy - Cookie Policy | Tailor made by plastica riciclata da post consumoeWeb

plastica riciclata da post consumo